Testosterone Replacement and General Urology

Dr. Johnny Hickson III, M.D.

Dr. Johnny Hickson III, M.D.

Southern Nazarene University
OU College of Medicine
TT Health Sciences Center
Urology Associates

Objectives

Hypogonadism and Testosterone Replacement Therapy

Hematuria Guidelines

Overactive Bladder

BPH

Hypogonadism

Hypogonadism is a clinical syndrome characterized by the failure of the testes to produce physiological concentrations of testosterone.

- Primary (testicular origin) gonadal (testicular) failure, where the testes
 are unable to produce adequate testosterone and/or sperm despite
 normal or elevated stimulation by pituitary gonadotropins.
 - Low testosterone levels with elevated LH and FSH due to loss of negative feedback.
 - Common causes: Klinefelter syndrome, testicular trauma, chemotherapy, radiation, and infections such as mumps orchitis.
- Secondary (hypothalamic or pituitary origin)
 - Results from dysfunction of the hypothalamus or pituitary, leading to low or inappropriately normal gonadotropin levels and low testosterone.
 - Etiologies include pituitary tumors, severe obesity, opioid or glucocorticoid use, and systemic illness.

Hypogonadism: Epidemiology

- Biochemical hypogonadism is observed in approximately 20% of men over 60, 30% over 70, and 50% over 80 years
- Serum total testosterone begins to decline gradually from the mid-30s at an average rate of 1.6% per year.
- Contributing factors: Obesity, diabetes, chronic illness, and medications (e.g., opioids, corticosteroids) further increase the risk of low testosterone in older men.
- In the US, TRT prescriptions have tripled in recent years, often in men with age-related or functional hypogonadism, not just those with classic (organic) hypogonadism.

Hypogonadism: Clinical Presentation

Signs & Symptoms

- Decreased libido
- Erectile dysfunction
- Reduced frequency of spontaneous erections
- Fatigue
- Decreased muscle mass and strength
- Increased body fat
- Impaired spermatogenesis

Physical findings are often limited, but may include decreased testicular volume, decreased body and facial hair, and gynecomastia.

Hypogonadism: Diagnosis

Lab Tests:

- Total testosterone level below 300 ng/dL
- Two low total testosterone measurements are taken on separate occasions between 8am and 10am (No fasting required)

The clinical diagnosis of testosterone deficiency is only made when patients have <u>low total testosterone</u> <u>levels **combined** with symptoms and/or signs.</u>

Hypogonadism Workup:

- H&P
- Labs
 - Two AM TT
 - o CBC (HCT)
 - o LH
 - PSA in > 40yo
- Additional testing
 - Prolactin, Estradiol, FSH, A1c

EVALUATION AND MANAGEMENT OF TESTOSTERONE DEFICIENCY: DIAGNOSTIC ALGORITHM

Copyright © 2018 American Urological Association Education and Research, Inc.®

special cases

Hypogonadism: Treatment

Lifestyle changes

- Weight loss
- Physical activity
- Diet changes
- Improving sleep quality
- Effective management of comorbidities
 - Sleep apnea, type 2 diabetes
- Discontinuation of medications that suppress the HPG axis (e.g., opioids, glucocorticoids)

Testosterone Replacement Therapy Options

Injections

Cypionate, enanthate, or undecanoate

Topical

Gels and patches

Oral

Capsules and troches

Pellets

BioT and testopel

Intranasal Gel

Natesto

Testosterone Replacement Therapy

<u>Importance of Testosterone Replacement Therapy (TRT):</u>

- Restores physiological testosterone levels in symptomatic men with confirmed deficiency
- Improves sexual function, mood, bone density, muscle mass
- Recommended by the American Urological Association and Endocrine Society for men with organic hypogonadism
- Requires careful patient selection and monitoring

TRT Treatment Options

Injections

- Cypionate IM Q 1-2 weeks
- Xyosted enthanate Subcutaneously weekly
- Long-acting testosterone undecanoate IM Q 10–14 weeks (not sure this is available in the US

Topical - Gels and patches

- Transdermal gels Risk of transference
 - o Important to know if they are around a young female child often

Oral medications

- Jatenzo, Tlando, and Kyzatrex
- May have variable absorption

Pellets

• BioT or testopel - implanted every 3 - 6 months.

Nasal

- Intranasal gel Natesto
- One pump (5.5 mg) in each nostril 3 times daily, for a total daily dose of 33 mg

TRT Monitoring

AUA recommends using the minimal dosing necessary to drive testosterone levels to the normal physiologic range of **450-600 ng/dL**, which is the **middle tertile of the normal range** for most laboratories.

450-600 ng/dL represents a viable range for all age-groups. Achieving testosterone levels in this window should ameliorate any symptoms that are genuinely associated with testosterone deficiency.

For men with on-treatment testosterone levels that fall below the suggested target range but who experience complete resolution of symptoms, there is no need to titrate dosing.

Age-specific Middle Tertile Levels

409-558 ng/dL (20-24 years old)

413-575 ng/dL (25-29 years old)

359-498 ng/dL (30-34 years old)

352-478 ng/dL (35-39 years old)

350-473 ng/dL (40-44 years old)

TRT Monitoring

Clinicians should measure an initial follow-up total testosterone level after an appropriate interval to ensure that target testosterone levels have been achieved.

Typically around 4 weeks after initiating treatment

Every 6-12 months check Total Testosterone and CBC (HCT)

Clinicians should discuss the *cessation of testosterone therapy* three to six months after commencement of treatment in patients who experience normalization of total testosterone levels but *fail to achieve symptom or sign improvement*.

Dr. Hickson's Workup and Management

Two AM total testosterones <300mg/dL

Labs every 3 months for the first year, then every 6 months thereafter.

If the PSA rises by 1.5 ng/ml or more in a year, or 0.75 ng/ml per year over two years, or an abnormal DRE is noted, stop TRT and discuss biopsy.

TRT Risks and Contraindications

Risks:

- Long-term impact of exogenous testosterone on spermatogenesis important to discuss in pts who desire future fertility
- Testosterone deficiency and a history of prostate cancer should be informed that there is inadequate evidence to quantify the risk-benefit ratio of testosterone therapy
- No definitive evidence linking testosterone therapy to a higher incidence of venothrombolic events

Contraindications:

- Men who are trying to conceive
- Prostate cancer
- Breast cancer
- Within 3-6 months of a Cardiovascular event

Objectives

Hypogonadism and Testosterone Replacement Therapy

Hematuria Guidelines

Overactive Bladder

BPH

Hematuria

Gross hematuria: visibly seeing blood in the urine

<u>Microhematuria</u>: Clinicians should define microhematuria as **>3 red blood cells per high-power field** on microscopic evaluation of a single, properly collected urine specimen.

Clinicians should not define microhematuria by positive dipstick testing alone.

A positive urine dipstick test (trace blood or greater) should prompt formal microscopic evaluation
of the urine.

Hematuria: Workup

Evaluation

- H&P, BMP/CMP, UA
 - Urinalysis w/ microscopy, possibly urine culture
- Check for benign causes: UTI, menstruation, vigorous exercise/trauma, recent GU procedure or instrumentation, kidney stone.
- Smoking history
- If a non-malignant or gynecologic source is ruled out then will use risk stratification or refer to urology.

AUA/SUFU Microhematuria Diagnostic Algorithm

- Additional risk factors include but are not limited to the following:
- · irritative lower urinary tract symptoms
- · prior pelvic radiation therapy
- history of cyclophosphamide/ifosfamide chemotherapy
- family history of urothelial carcinoma or Lynch syndrome
- occupational exposure to benzene chemicals or aromatic amines
- chronic indwelling foreign body in the urinary tract.

Note, risk stratification and risk-based evaluation are the same for those on antiplatelet and anti-coagulation therapy as for those who are not.

- If medical renal disease is suspected, consider nephrological evaluation, but pursue concurrent risk-based urologic evaluation.
- 3. There are non-malignant and gynecologic sources of hematuria that do not require treatment and/or may confound the diagnosis of microhematuria. Use careful judgment and patient engagement to decide whether to pursue microhematuria evaluation in the setting of such conditions.
- Clinicians may perform cross-sectional imaging with urography or retrograde pyelograms if hematuria persists after negative renal ultrasound.
- Intermediate-risk patients who decline cystoscopy following UBTMs should still undergo renal and bladder ultrasound.
- MR urogram or non-contrast imaging plus retrograde pyelograms if contraindications to CT urogram.

HPF: high-power field RBC: red blood cell SDM: shared decision-making UA: urinalysis UBTM: urine-based tumor marker

Hematuria: Evaluation

- Upper Tract Imaging
 - Renal Ultrasound or CT Urogram : CT abdomen and pelvis without contrast, with contrast and with delayed contrast.
- Cystoscopy

Figure 1
A flexible cystoscopy

Objectives

Hypogonadism and Testosterone Replacement Therapy

Hematuria Guidelines

Overactive Bladder

BPH

Overactive Bladder

Refers to urinary urgency, +/- frequency, nocturia, urge incontinence, absence of UTI or other pathology

Definitions

- Urgency = sudden desire to urinate, difficult to defer Urge incontinence = above + involuntary leakage

Epidemiology

OAB is highly prevalent, affecting approximately 11–19% of adults in both men and women, with prevalence increasing with age

Risk Factors

Age, postmenopausal, bladder inflammation, BOO, CNS dz – any brain or upper motor neuron lesion (MS, stroke, parkinsons, any SCI)

Overactive Bladder: Evaluation

Evaluation

- H&P, UA, PVR for uncomplicated pts
- Add voiding diary, urodynamics, etc if complicated (e.g. DM, CNS lesion, poor response to meds, young, hematuria, recurrent UTI, h/o pelvic CA or surgery)

Overactive Bladder: Treatment

Treatment

- Behavioral changes:
 - Timed voiding, double voiding
 - Pelvic floor Physical Therapy
- Medication Therapy
 - Anticholinergics (Ditropan, Vesicare, Detrol...)
 - Cheap, but many SEs (drymouth, constipation)
 - B-agonist (Myrbetriq, Gemtesa)
 - Expensive, fewer SEs

Overactive Bladder: Treatment

Procedures

- Botox injections fast, decent results, not durable
- Percutaneous tibial nerve stimulation
- Sacral nerve stimulation (Interstim/Axonics), decent results, more durable

Objectives

Hypogonadism and Testosterone Replacement Therapy

Hematuria Guidelines

Overactive Bladder

BPH

BPH: Benign Prostatic Hyperplasia

BPH: nonmalignant proliferation of both stromal and epithelial cells within the transition zone of the prostate, resulting in enlargement of the gland.

Transitional zone – located centrally and surrounds the urethra, comprising approximately 5-10% of normal prostate volume.

BPH: Pathophysiology

- This process characterized by the nonmalignant proliferation of both stromal and epithelial cells, predominantly within the transition zone of the prostate.
- The primary drivers are **androgen signaling**, particularly the action of dihydrotestosterone (DHT) via the androgen receptor, which <u>promotes cellular proliferation and inhibits apoptosis in prostatic tissue.</u>
- The enzyme 5α-reductase converts testosterone to DHT, and this pathway is central to BPH development and the rationale for 5α-reductase inhibitor therapy. (Finasteride)

BPH: Epidemiology

Age (years)	Histologic Evidence of BPH
31- 40	8%
41 - 50	20%
51 - 60	50%
61 - 70	75%
71 - 80	80%
> 80	90%

Age-associated increase in pathologic evidence of benign prostatic hyperplasia in 1075 men at autopsy. The percentage with benign prostatic hyperplasia was determined during 10-year intervals from five different studies; the mean values are shown.

Data from Berry, SJ, Coffey, DS, Walsh, PC, et al. The development of human benign prostatic hyperplasia with age. J Urol 1984;132:474.

- Age 55: ~ 25% of men report obstructive LUTS
- Age 75: ~ 50% of men c/o obstructive LUTS

BPH: Presentation

Obstructive Symptoms

Prostate associated
Hesitancy
Weak stream
Sensation of incomplete emptying
Double voiding
Post void dribble

<u>Irritative symptoms</u>

Bladder associated Frequency Urgency Nocturia

BPH

Medical History

- AUA symptom index / International Prostate Symptom Score
- Effect on QOL

Physical Exam

- Digital Rectal Exam (DRE) guidelines now suggest DRE only at initial eval of patient suspected to have BPH. size, consistency, nodule
- Approximate prostate size normal is 20-25cc (walnut)
- Labs UA and PSA
- Post-void residual (PVR)

Office procedures:

- Transrectal US for prostate sizing and cystoscopy
 - preferred for treatment guidance

BPH: Prostate Size

Prostate Size/ Volume

Small: < 30 g (walnut)

Average: 30 – 80 g (ping pong ball, golf ball, clementine)

• Large: 81 – 150 g

Very large: > 150 g (tennis ball)

Some common comparisons to help assess prostate size

BPH: Treatment

Treatment Goals

- Depends on how bothersome it is
- However important to rule out "silent" obstruction Highly elevated PVR's can lead to bladder dysfunction, hydronephrosis and ultimately declined kidney function.

Noninvasive/Behavior modifications

- Avoid α-agonists (pseudoephedrine, ephedra-containing diet supp)
- Dietary change caffeine, EtOH, spicy foods
- Fluid restriction for nocturia, diuretics, ? sleep study
- Supplements/herbal: no data showing efficacy

BPH: Treatment

Medication management

- Alpha blockers (tamsulosin, doxazosin, alfuzosin)
 - Improved symptoms within days, prevent BPH progression
 - SEs: dizziness, nasal congestion, retrograde ejaculation
 - relaxes the smooth muscle in the prostate and bladder neck
- <u>5 α reductase inhibitors</u> (finasteride, dutasteride)
 - Reduces prostate volume, ~6 mos, reduce BPH progression and risk of AUR; reduces PSA, need to double PSA for CAP screening
 - Simultaneous admin w/α blockers improves voiding symptoms and PVR more than monotherapy
- PDE 5 inhibitors (tadalafil)
 - 5mg daily dose approved for BPH sxs

BPH: Treatment

Surgical Intervention

- Minimally invasive: Urolift, Rezum, PAE
 - For smaller sized prostates, <80g
 - Preserves sexual function
- More invasive
 - Transurethral resection of the prostate (TURP)
 - Transurethral laser surgery
 - Thulium or Green laser
 - Holmium Laser Enucleation of the Prostate (HoLEP)
 - Simple Prostatectomy Open, Laparoscopic, or Robotic usually for larger prostates

Contact information

Urology Associates

11000 Hefner Pointe Dr.

Oklahoma City, OK 73120

Office: 1(405)749-9655

Fax: 1(405)749-1001

Cell: 1(405)206-5106

Email: JHickson@urologyokc.com

Sources

Zhu A, Andino J, Daignault-Newton S, Chopra Z, Sarma A, Dupree JM. What Is a Normal Testosterone Level for Young Men? Rethinking the 300 ng/dL Cutoff for Testosterone Deficiency in Men 20-44 Years Old. J Urol. 2022 Dec;208(6):1295-1302. doi: 10.1097/JU.0000000000002928. Epub 2022 Oct 25. PMID: 36282060.

Mulhall JP, Trost LW, Brannigan RE et al: Evaluation and management of testosterone deficiency: AUA guideline. J Urol 2018; 200: 423.

https://www.auanet.org/guidelines-and-quality/guidelines/benign-prostatic-hyperplasia-(bph)-guideline

Lerner LB, McVary KT, Barry, MJ, et al: Management of Lower Urinary Tract Symptoms Attributed to Benign Prostatic Hyperplasia: AUA GUIDELINE. Journal of Urology 2021; 206: 806

Speakman MJ, Cheng X. Management of the complications of BPH/BOO. Indian J Urol. 2014; 30(2): 208-213.

Ng M, Leslie SW, Baradhi KM. Benign Prostatic Hyperplasia. [Updated 2024 Oct 20]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK558920/

Evaluation and Management of Testosterone Deficiency: AUA Guideline. Mulhall JP, Trost LW, Brannigan RE, et al.

The Journal of Urology. 2018;200(2):423-432. doi:10.1016/j.juro.2018.03.115.

Testosterone Therapy in Men With Hypogonadism: An Endocrine Society Clinical Practice Guideline. Bhasin S, Brito JP, Cunningham GR, et al.

The Journal of Clinical Endocrinology and Metabolism. 2018;103(5):1715-1744. doi:10.1210/jc.2018-00229. 3.Male Hypogonadism. Basaria S. Lancet (London, England). 2014;383(9924):1250-63. doi:10.1016/S0140-6736(13)61126-5.

Aging and Androgens: Physiology and Clinical Implications.

Anawalt BD, Matsumoto AM. Reviews in Endocrine & Metabolic Disorders. 2022;23(6):1123-1137. doi:10.1007/s11154-022-09765-2.

Testosterone Deficiency and the Aging Male.

Gryzinski GM, Bernie HL. International Journal of Impotence Research. 2022;34(7):630-634. doi:10.1038/s41443-022-00555-7.

The Role of Testosterone in the Elderly: What Do We Know?.Barone B, Napolitano L, Abate M, et al. International Journal of Molecular Sciences. 2022;23(7):3535. doi:10.3390/ijms23073535

Cameron AP, Chung DE, Dielubanza EJ, et al. The AUA/SUFU guideline on the diagnosis and treatment of idiopathic overactive bladder. J Urol. Published online April 23, 2024. doi:10.1097/JU.00000000000003985. https://www.auajournals.org/doi/10.1097/JU.000000000003985