

Evolving Paradigm of Antiplatelet Therapy Following PCI or ACS

Usman Baber, MD MS Associate Professor of Medicine (Cardiology) Director, Cardiac Catheterization Laboratory University of Oklahoma Health Sciences Center

Disclosures

Speakers' Bureau:

- Astra Zeneca: Antithrombotic Therapy post MI
- Amgen: Lipoproteins
- Abbott: Optical Coherence Tomography (OCT)
- Boston Scientific: Drug eluting stent

All relevant financial relationships have been mitigated.

Case Presentation

- 74 y/o male presents with NSTEMI
 - Fe deficiency anemia with baseline Hgb 8 9; unrevealing work-up with endoscopy
 - HFpEF; moderate AS and AI
 - Advanced, oxygen-dependent CKD
 - CKD (eGFR ~ 45 ml/min)

Calcific prox/mid LAD culprit

Eccentric calcification

Is this patient considered high bleeding risk?

Should he be treated with DAPT for 1, 3, 6, > 6 months?

How does one weigh thrombotic risk (NSTEMI; prox/mid LAD; complex lesion) versus bleeding risk (anemia; CKD)

What is optimal long-term therapy?

DAPT: Evolution over time

Need for DAPT After PCI (or ACS)

Mortality risk after ST compared with controls

Prevent focal thrombosis (early)

Risk of MI from non-culprit versus culprit lesion

Prevent systemic thrombosis (late)

STARS Trial

A CLINICAL TRIAL COMPARING THREE ANTITHROMBOTIC-DRUG REGIMENS AFTER CORONARY-ARTERY STENTING

A CLINICAL TRIAL COMPARING THREE ANTITHROMBOTIC-DRUG REGIMENS AFTER CORONARY-ARTERY STENTING

MARTIN B. LEON, M.D., DONALD S. BAIM, M.D., JEFFREY J. POPMA, M.D., PAUL C. GORDON, M.D., DONALD E. CUTLIP, M.D., KALON K.L. HO, M.D., ALEX GIAMBARTOLOMEI, M.D., DANIEL J. DIVER, M.D., DAVID M. LASORDA, D.O., DAVID O. WILLIAMS, M.D., STUART J. POCOCK, PH.D., AND RICHARD E. KUNTZ, M.D., FOR THE STENT ANTICOAGULATION RESTENOSIS STUDY INVESTIGATORS*

Figure 1. Cumulative Incidence of the Primary End Point in the Three Treatment Groups.

Landmark trial that showed DAPT was optimal antithrombotic approach to prevent early thrombosis

and

Aspirin served as foundation for DAPT

N Engl J Med 1998;339:1665-71

CURE Trial: Clop vs. Placebo

~ 67% treated medically; 33% PCI/CABG

UHealth

Yusuf et al., NEJM 2001

Variability in response to clopidogrel

TRITON TIMI 38: Pras vs. Clop in ACS *All patients underwent PCI*

PLATO: Tica vs. Clop in ACS ~ 25% treated medically; 10% CABG

2016 ACC/AHA DAPT Guidelines DAPT Duration

Levine GN, et al. JACC. 2016. 68:1082-1115.

DAPT: Evolution over time

Bleeding and Mortality

Bleeding versus MI: Mortality Impact

RCT involving NSTE-ACS

n=12,994

BARC type 2 and 3 bleeding associated with excess mortality

"... the risk of mortality was equivalent between BARC 3b bleeding and MI,..."

Valgimigli et al., 2017

Mechanisms linking Bleeding to Mortality

• Interruption of antiplatelet or other therapies

• Alterations in blood viscosity and thrombogenicity

 Risk marker for patients at elevated risk for subsequent thrombosis

Defining High Bleeding Risk in Patients Undergoing Percutaneous Coronary Intervention

A Consensus Document From the Academic Research Consortium for High Bleeding Risk

"HBR is defined as a BARC 3 or 5 bleeding risk of ≥ 4% at 1 year..."

Urban et al. Circulation 2019

HBR Prevalence

Mount Sinai PCI Registry; HBR prevalence 44% n= 9623; 2014 - 2017

Cao et al., JACC 2020

HBR: Bleeding and Thrombotic Risk

Mount Sinai PCI Registry; n= 9623; 2014 - 2017

Evolution of coronary stents

Q Healt

THE LANCET

Volume 379, Issue 9824, 14-20 April 2012, Pages 1368-1369

1-year definite stent thron	nbosis*	Odds Ratio [95%]
CoCr-EES vs BMS	⊢−●− −1	0.23 (0.13-0.41)
CoCr-EES vs PES	⊢ •−1	0.28 (0.16-0.48)
CoCr-EES vs SES	⊢ •	0.41 (0.24-0.70)
CoCr-EES vs Res-ZES	► −−−	0.14 (0.03-0.47)
CoCr-EES vs End-ZES	⊢−● −1	0.21 (0.10-0.44)
SES vs BMS	⊢ ● ⊣ ¦	0.57 (0.36-0.88)
End-ZES vs SES	,	1.92 (1.07-3.90)
0.01	0.1 1	10
	Favors Stent 1	Favors Stent 2

Newer-generation DES reduce ST when compared to 1st generation devices and BMS

Palmerini T et al. Lancet 2012

LEADERS FREE Trial (n=2466)

DAPT: Evolution over time

Bleeding Reduction Strategies

- Shorten DAPT duration
 - Typically stop P2Y₁₂ inhibitor
 - Tested in HBR patients
- Aspirin withdrawal
 - Examined in non-HBR cohorts
 - Primarily tested in patients receiving ticagrelor
- De-escalation

XIENCE – Short DAPT

Single arm; compared with historical control

Mean age ~ 75 *years;* ~ 40% *OAC;* ~ 13% *Tn* (+) *ACS*

Mehran et al. JACC Int 2021

XIENCE – Short DAPT Results

Mehran et al. JACC Int 2021

MASTER DAPT Trial

Mean age ~ 76 years; ~ 36% OAC ; ~ 35% Tn (+) ACS

Frigoli et al. AHJ2019

MASTER DAPT Trial - Results

MACCE

BLEEDING

All patient received biodegradable SES

Ischemic event rates lower than expected

Monotherapy mixture of P2Y12i (predominant clopidogrel) and Aspirin

Valgimigli et al. NEJM 2021

ACC/ACHA 2016 DAPT Guideline Update

Duration of DAPT in Patients With SIHD Treated With PCI

COR	LOE	Recommendations		
llb	C-LD	In patients with SIHD treated with DAPT after DES implantation who develop a high risk of bleeding (e.g., treatment with oral anticoagulant therapy), are at high risk of severe bleeding complication (e.g., major intracranial surgery), or develop significant overt bleeding, <i>discontinuation of P2Y</i> ₁₂ <i>inhibitor therapy after 3</i>		
		months may be reasonable.		

Duration of DAPT in Patients With ACS Treated With PCI

COR	LOE	Recommendations
llb	C-LD	In patients with ACS treated with DAPT after DES implantation who develop a high risk of bleeding (e.g., treatment with oral anticoagulant therapy), are at high risk of severe bleeding complication (e.g., major intracranial surgery), or develop significant overt bleeding, <i>discontinuation of P2Y</i> ₁₂ <i>inhibitor therapy after 6 months may be reasonable</i> .

Aspirin Free Strategies

Ex-vivo thrombus formation: TWILIGHT Platelet Substudy

In the presence of strong P2Y₁₂ inhibitor blockade, acetylsalicylic acid provides little additional inhibition of platelet aggregation

Capodanno et al, Nature Reviews 2018; Baber et al., JACC 2020

Q Health

Aspirin Withdrawal in ACS

Tomaniak et al. 2019; Kim et al. 2020; Hahn et al. 2019; Baber et al. 2020; Watanabe et al. 2022; Smits et al. 2022

P2Y12 inhibitor monotherapy or dual antiplatelet therapy after coronary revascularisation: individual patient level meta-analysis of randomised controlled trials

	P2Y12i monotherapy (%) (n=11 634)	DAPT (%) (n=11 674)	Hazard ratio (95% CI)	P value for Hazard ratio interaction (95% CI)
Primary outcome				
Clopidogrel	60/2618 (2.5)	65/2650 (2.7)	◆	0.16 0.94 (0.66 to 1.33)
Newer P2Y12i	243/9016 (2.9)	273/9024 (3.4)		0.89 (0.75 to 1.06)
All cause mortality				
Clopidogrel	29/2618 (1.2)	27/2650 (1.1)		0.16 1.09 (0.65 to 1.84)
Newer P2Y12i	78/9016 (0.9)	110/9024 (1.4)	_	0.71 (0.53 to 0.95)
Myocardial infarction				
Clopidogrel	19/2618 (0.8)	23/2650 (1.0)	•	0.23 0.84 (0.46 to 1.54)
Newer P2Y12i	148/9016 (1.8)	158/9024 (1.9)		0.94 (0.75 to 1.17)
Stroke				
Clopidogrel	15/2618 (0.6)	17/2650 (0.7)	• • •	- 0.40 0.90 (0.45 to 1.79)
Newer P2Y12i	36/9016 (0.5)	28/9024 (0.3)		→ 1.29 (0.79 to 2.11)
BARC 3 or 5				
Clopidogrel	19/2618 (0.8)	32/2650 (1.3)	◆	0.41 0.60 (0.34 to 1.06)
Newer P2Y12i	78/9016 (0.9)	165/9024 (1.9)	_	0.47 (0.36 to 0.62)
			0.25 0.50 1	2
Valgimigli et al. 2021	1		P2Y12i monotherapy better DAPT be	etter

Aspirin Withdrawal: Guidelines

- ESC Myocardial Revasc (2018) P2Y12i monotherapy after 6 months DAPT (IIa)
- ESC NSTE-ACS (2020)

P2Y12i monotherapy after 3-6 months DAPT (IIa)

ACC/AHA Revasc (2021)
P2Y12i monotherapy after 1-3 months DAPT (IIa)

Neumann et al. 2018; Collet et al. 2020; Lawton et al. 2021

De-escalation

- Switch from tica/pras to clopidogrel
 - Guided (genotype or platelet function testing)
 - Unguided
- Transition to lower dose of tica/pras
 - Tica 90 > 60
 - Pras 10 -> 5
- DAPT is maintained at lower bleeding risk

De-escalation Evidence Base

Carrabba et al. 2016; Kim et al. 2020; Kim et al. 2021; Cuisset et al. 2017; Claassens et al., 2019; Sibbing et al. 2017; Cayla et al., 2016; Jin et al. 2021; Jeong et al., 2021

De-escalation: Results

Meta-analysis; 5 RCT; 10,779 patients De-escalation (guided; unguided; lower dose) versus standard DAPT De-escalation reduced bleeding and MACE Results consistent guided/unguided approaches

Clinically relevant bleeding

MACE

De-Escalation: Guidelines

- ESC Myocardial Revasc (2018) Guided (IIb)
- ESC NSTE-ACS (2020)

Guided or unguided (IIb)

• ACC/AHA Revasc (2021) Not mentioned

Neumann et al. 2018; Collet et al. 2020; Lawton et al. 2021

DAPT: Evolution over time

PEGASUS (Prior MI)

Bonaca et al., AHJ 2014

PEGASUS (Prior MI)

Major bleeding increase by absolute ~ 1.3%

No significant difference in fatal bleeding or ICH

FDA label for ticagrelor expanded for use in patients with prior MI at 60 mg twice daily dose in 2015

THEMIS (Diabetes Mellitus)

- Study population: Stable CAD (~ 60% prior PCI) and DM. *Prior MI excluded*
- n = 19,220
- Ticagrelor plus ASA vs. ASA alone
- Primary efficacy EP: CV death, MI, stroke
- Primary safety EP: Major Bleeding
- Median f/u 40 months

Net Clinical Benefit

All cause death, MI, stroke, fatal bleed, or ICH (ITT)*

*Prespecified definition of net clinical benefit.

CI=confidence interval; HR=hazard ratio; ICH=intracranial hemorrhage; ITT=intention to treat; MI=myocardial infarction; PCI=percutaneous coronary intervation Bhatt DL, Steg PG, et al. Lancet 2019 http://dx.doi.org/10.1016/S0140-6736(19)31887-2.

COMPASS (Dual Pathway Inhibition)

COMPASS (Dual Pathway Inhibition)

Major bleeding increase by absolute ~ 70%

No significant difference in fatal bleeding or ICH

Reduction in all-cause mortality with riva + aspirin

Trial terminated early due to efficacy

Aspirin versus P2Y₁₂ inhibitor monotherapy?

P2Y ₁₂ Inhibitor Mo (N = 12,17	onotherapy 8)	Aspirin Monotherapy (N = 12,147)	
Clinical Outcomes	Log HR (95% C	I) HR (95% CI)	<i>P</i> Value
Cardiovascular death, MI, or stroke		0.88 (0.79-0.97)	0.012
All-cause death		1.04 (0.91-1.20)	0.560
Cardiovascular death	-+-	1.02 (0.86-1.20)	0.820
Myocardial infarction		0.77 (0.66-0.90)	< 0.001
Any stroke		0.84 (0.70-1.02)	0.076
Ischemic stroke		0.93 (0.75-1.13)	0.450
Hemorrhagic stroke		0.43 (0.23-0.83)	0.012
Definite/probable ST		0.46 (0.23-0.92)	0.028
Major bleeding		0.87 (0.70-1.09)	0.229
Major GI bleeding		0.67 (0.43-1.06)	0.089
Any GI bleeding		0.75 (0.57-0.97)	0.027
Net adverse clinical events	-	0.89 (0.81-0.98)	0.020
0.2	0.5 1	2 5	
Favors P	2Y ₁₂ Inhibitor Fav	ors Aspirin	

Patient-level meta-analysis

7 trials; 24,325 patients

Majority received clopidogrel (62%)

Less MI, hemorrhagic stroke and GI bleeding with PY₁₂i monotherapy

"...P2Y₁₂ inhibitor monotherapy might be preferred over aspirin monotherapy for long-term secondary prevention in patients with established CAD."

ESC 2019 Guidelines

Adding a second antithrombotic drug to aspirin for long-term secondary prevention should be considered in patients with a high risk of ischaemic events ^c and without high bleeding risk ^d (see <i>Table 9</i> for options). ^{289,296,297,307}	lla
Adding a second antithrombotic drug to aspirin for long-term secondary prevention may be considered in patients with at least a moderately increased risk of ischaemic events ^e and without high bleeding risk ^d (see <i>Table 9</i> for options). ^{289,296,297,307}	IIb

High ischemic risk: MV CAD plus DM requiring medication; recurrent MI; PAD; CKD

Drug option	Dose	Indication	Additional cautions	References
Clopidogrel	75 mg o.d.	Post-MI in patients who have tolerated DAPT for 1 year		289,290
Prasugrel	10 mg o.d or 5 mg o.d.; if body weight <60 kg or age >75 years	Post-PCI for MI in patients who have tolerated DAPT for 1 year	Age >75 years	289,290,313
Rivaroxaban	2.5 mg b.i.d.	Post-MI >1 year or multivessel CAD	Creatinine clearance 15 - 29 mL/min	297
Ticagrelor	60 mg b.i.d.	Post-MI in patients who have tolerated DAPT for 1 year		291–293,307,314

Case Resolution

Pre

Post

Underwent cutting balloon angioplasty and DES x 1

Discharged on aspirin + clopidogrel

After 30 days switch to clopidogrel monotherapy

Conclusions

- A short course of DAPT is necessary to prevent near-term atherothrombotic events
- Major bleeding is common and associates with a comparable mortality risk to that of myocardial infarction
- "True" HBR patients may be treated with a 4-week course of DAPT followed by single antiplatelet therapy (aspirin or clopidogrel)
- Aspirin withdrawal followed by P2Y₁₂ inhibitor monotherapy or de-escalation has emerged as an alternative to DAPT in the setting of ACS
- Long-term secondary prevention with DAPT or aspirin + low-dose DOAC provides a net clinical benefit in appropriate patients

THANK YOU!!

