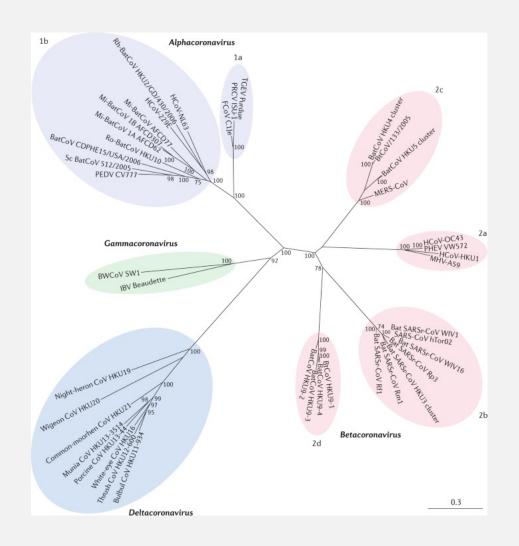
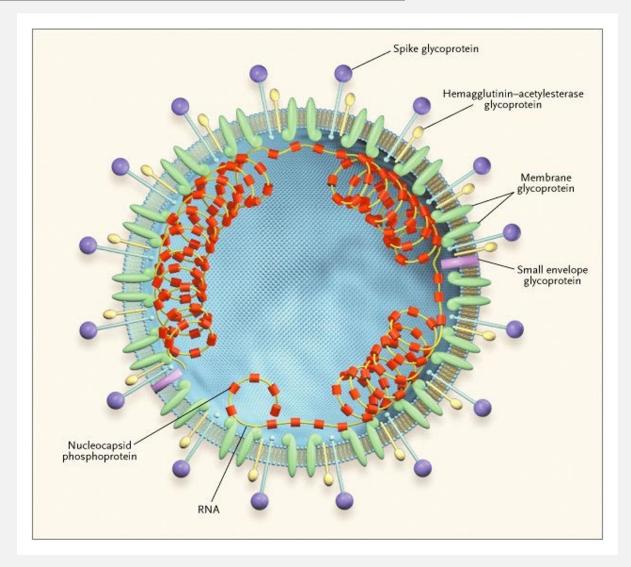

# COVID-19 / SARS-COV2 /CORONAVIRUS

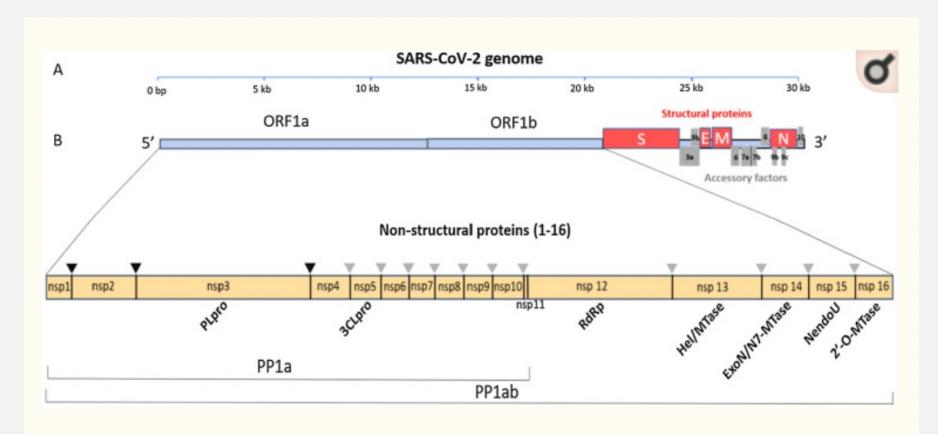

Anuj Malik MD MS Infectious Disease Consultant Director: Infection Prevention and Antimicrobial Stewardship Ascension St. John Medical Center

Tulsa, OK.

# **OBJECTIVES**

- Microbiology of SARS-CoV 2 / Origin
- Acquisition / Epidemiology Airborne/Contact; Days of infectiousness, Role of children / schools, Hotspots
- Clinical features of COVID 19: my personal observations
- Diagnosis and Testing: Pitfalls
- Treatment: State of the Art 9/2021
- Vaccines: hope and misinformation




Cui, J., Li, F. & Shi, Z. Origin and evolution of pathogenic coronaviruses. *Nat Rev Microbiol* **17**, 181–192 (2019).

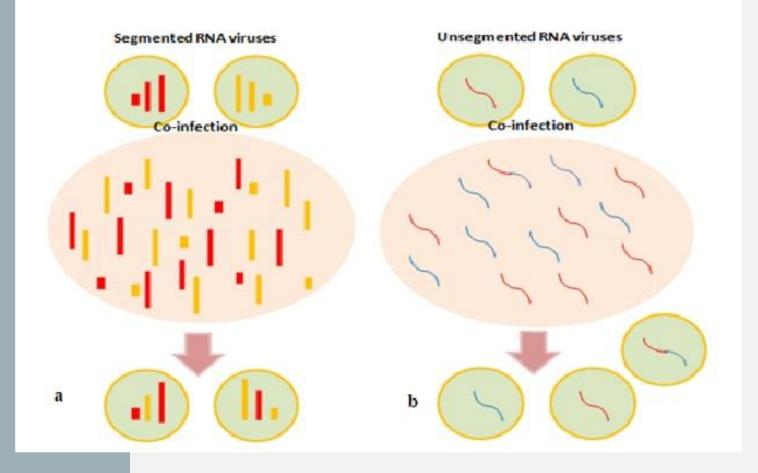
# MICROBIOLOGY

- Novel Coronavirus RNA virus, Positive sense, encodes a polyprotein
- Non-structural proteins including RNA dependent RNA polymerase: inhibited by remdesivir, Protease
- Structural proteins Spike, Nucleocapsid, Envelope, HA, Membrane
- Human receptor ACE 2
- Binding element Spike glycoprotein (S) protein (RBD-receptor binding domain)
- Replication in Alveolar Pneumocytes, type II





#### Figure 1


The SARS-CoV-2 genome has many ORFs and encodes as far as 50 non-structural, structural, and accessory proteins. Source: Romano et al. $\frac{7}{2}$ .

## SARS- CoV 2 Genome

# VIRAL EVOLUTION – EMERGENCE OF NEW VIRUSES

High rates of mutation

Homologous recombination Heterologous recombination



## First U.S. Confirmed Case of 2019-nCoV Infection

M.L. Holshue and Others N Engl J Med 2020; 382:929-936

A healthy 35-year-old man who had visited Wuhan, China, presented with cough and fever that progressed to pneumonia. This report describes the diagnosis, clinical course, and management of the condition. The case highlights the importance of close coordination between clinicians and public health authorities at the local, state, and federal levels.

#### Correspondence First Case of Covid-19 in the United States

See Also Chinese Translation in NEJM 医学前沿

FREE

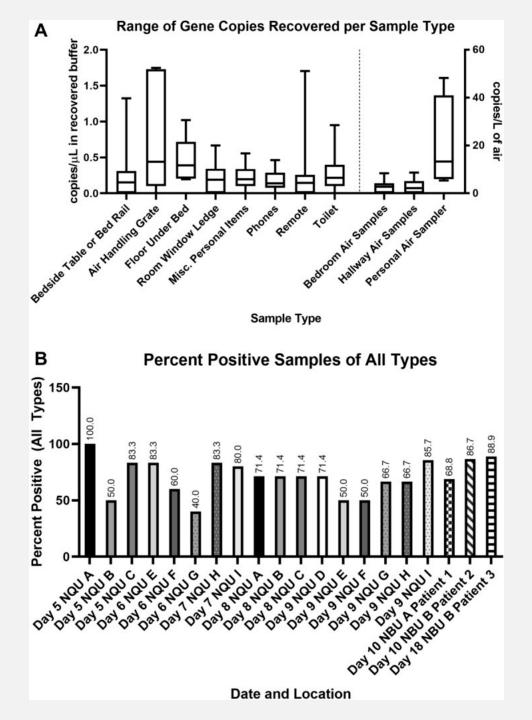
#### CORRESPONDENCE MAR 05, 2020

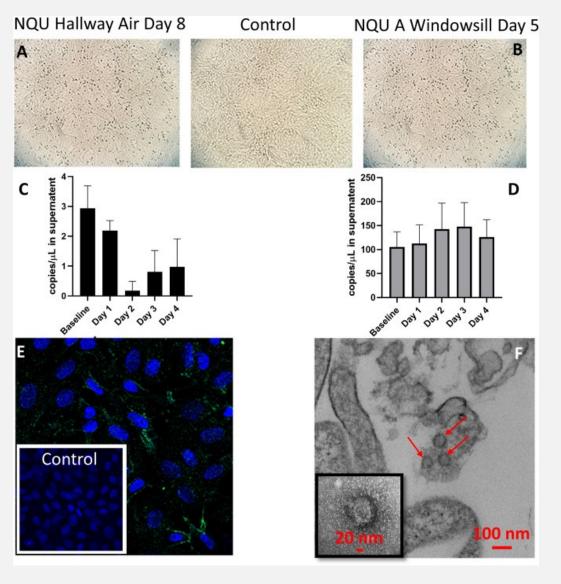
### 2019-nCoV Transmission from Asymptomatic Patient

C. Rothe and Others N Engl J Med 2020; 382:970-971

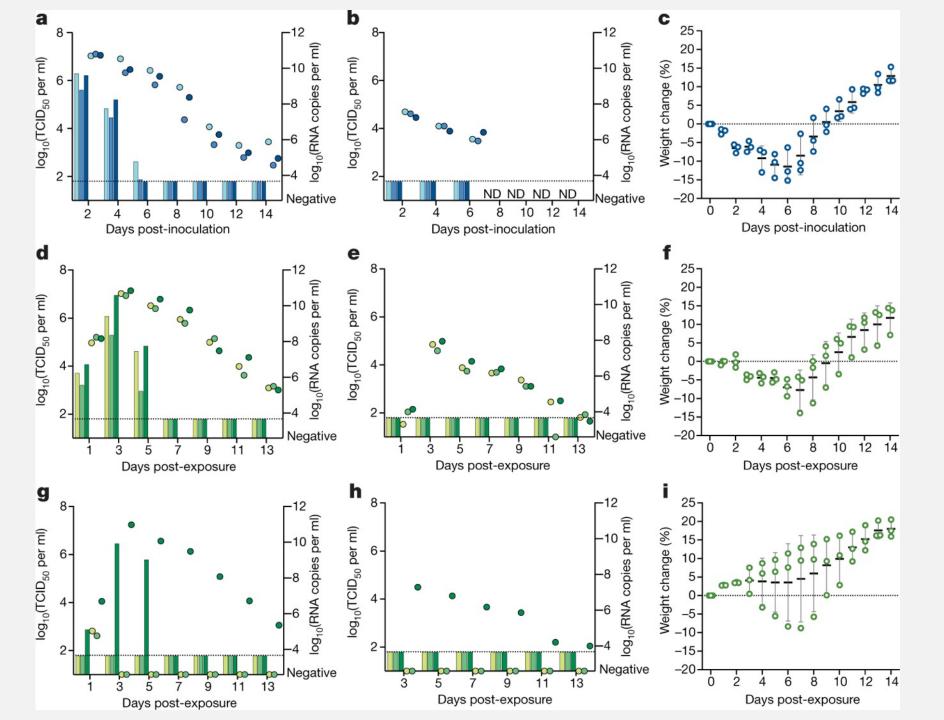
In this report, investigators in Germany detected the spread of the novel coronavirus (2019-nCoV) from a person who had recently traveled from China to Germany for a business trip. This transmission occurred before the apparent onset of illness in the index patient and was associated with additional transmission events in Germany.

### Indoor / enclosed spaces with Congregation


- -- Churches
- -- Gyms
- -- Restaurants / indoor dining / Bars
- -- Gathering with friends / family
- -- Work place transmission
- -- Nursing homes: employees
- -- Assisted living
- -- Colleges: eg. UNC, parties, no masking


### **Transmission Routes**

- -- Primarily Airborne AND Droplet
- -- Not likely much conjunctival
- -- Not likely much fecal
- -- Not likely much contagion / touch


### **Duration of Infectiousness**

- -- mild to severe cases 10 days
- -- critical cases 20 days
- -- immune compromised cases 20 days





Santarpia JL, Rivera DN, Herrera VL, et al. Aerosol and surface contamination of SARS-CoV-2 observed in quarantine and isolation care [published correction appears in Sci Rep. 2020 Aug 12;10(1):13892]. *Sci Rep.* 2020;10(1):12732. Published 2020 Jul 29. doi:10.1038/s41598-020-69286-3



A, b, c – donor hamsters

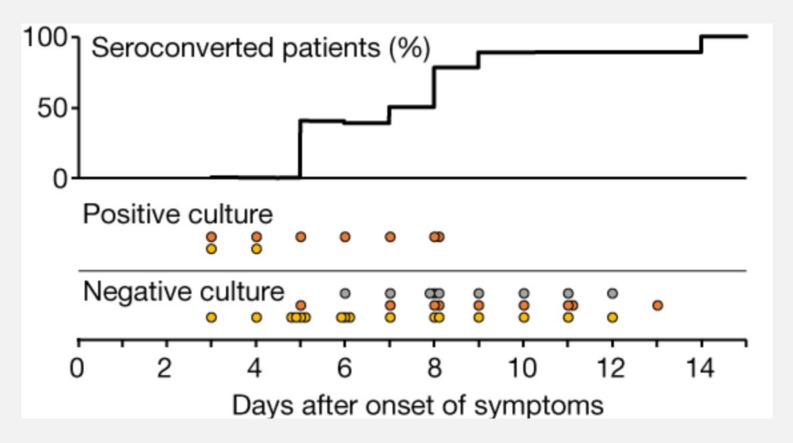
D, e, f - co-housed hamsters

G, h, I – single housed in donor cage

Panel 1 – nasal washes Panel 2 – fecal samples Panel 3 – weight plotted versus days

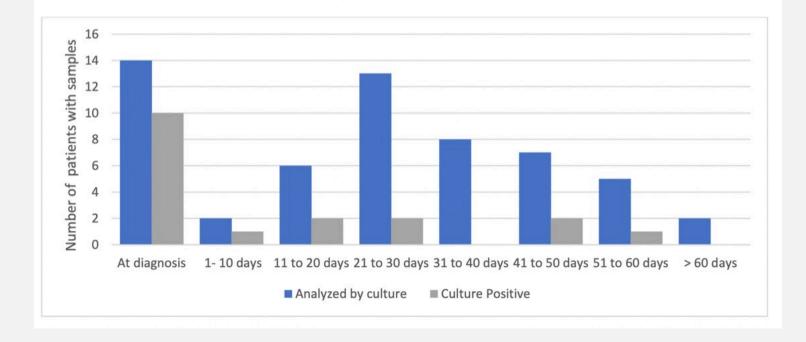
Each shade is a unique animal Blue – inoculated hamster Green – naïve hamster

Sia, S.F., Yan, L., Chin, A.W.H. *et al.* Pathogenesis and transmission of SARS-CoV-2 in golden hamsters. *Nature* **583**, 834–838 (2020). https://doi.org/10.1038/s41586-020-2342-5

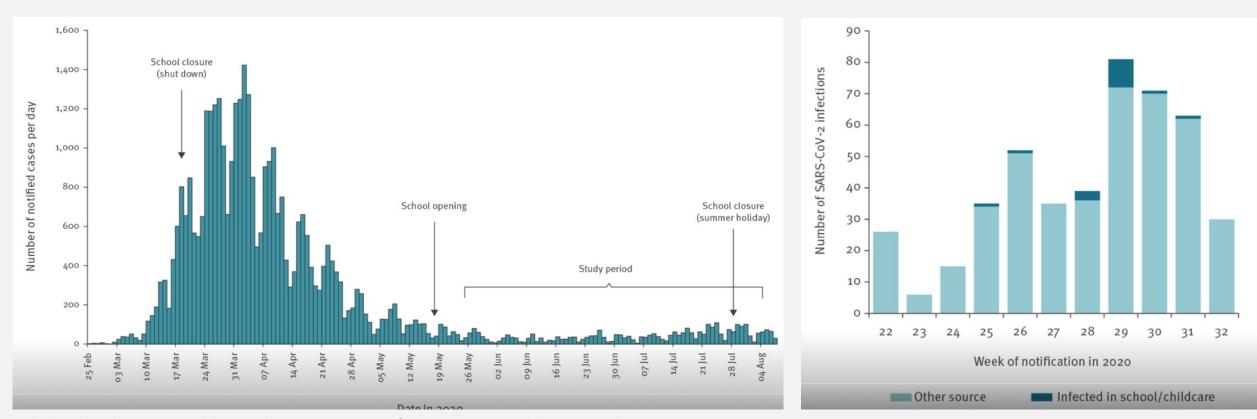

## **Duration of Virus Culture Positivity**

- 90 RT-PCR positive samples incubated on cell culture
- 26 samples showed viral growth
- No viral growth past 8 days symptom to test




Jared Bullard, Kerry Dust, Duane Funk, James E Strong, David Alexander, Lauren Garnett, Carl Boodman, Alexander Bello, Adam Hedley, Zachary Schiffman, Kaylie Doan, Nathalie Bastien, Yan Li, Paul G Van Caeseele, Guillaume Poliquin, Predicting Infectious Severe Acute Respiratory Syndrome Coronavirus 2 From Diagnostic Samples, *Clinical Infectious Diseases*,

- -- seroconversion by 14 days in all
- -- negative cultures in all specimen Types by day 9
- -- stool cultures always negative
- -- mild to moderate disease only
- -- grey: stool
- -- yellow: NP swab/ OP swab
- -- orange: Sputum




Wölfel, R., Corman, V.M., Guggemos, W. *et al.* Virological assessment of hospitalized patients with COVID-2019. *Nature* **581**, 465–469 (2020).

**Figure S1** Graph showing collection time of 57 analyzed samples from 20 patients relative to the time of laboratory confirmation of SARS CoV-2 by PCR. At diagnosis, 10/14 patients with samples had viral isolation in culture. Eight additional samples from five patients were positive as shown in the grey bars. Overall, 11 unique patients had at least one positive isolation.



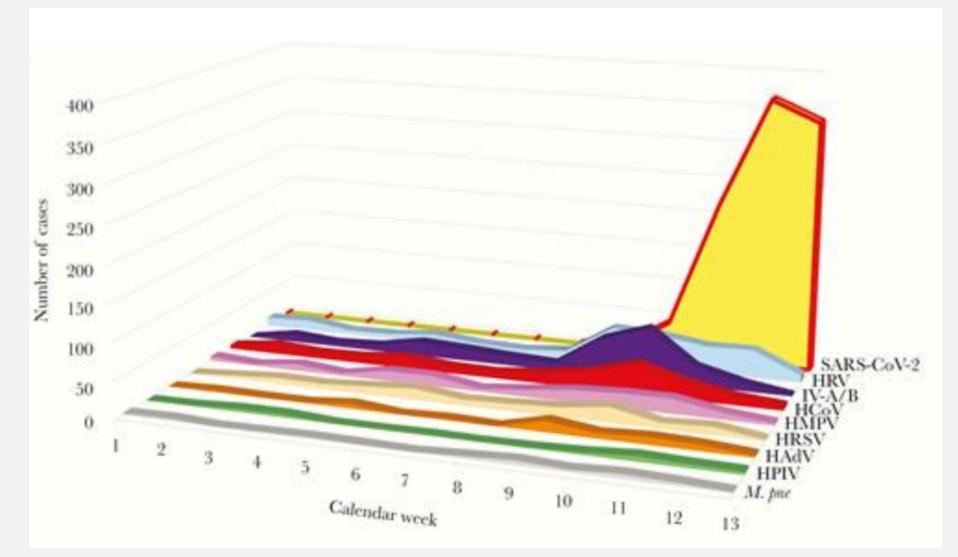
# Children may not acquire and transmit SARS-CoV 2 as readily



Ehrhardt J, Ekinci A, Krehl H, et al. Transmission of SARS-CoV-2 in children aged 0 to 19 years in childcare facilities and schools after their reopening in May 2020, Baden-Württemberg, Germany. *Euro Surveill*. 2020;25(36):10.2807/1560-7917.ES.2020.25.36.2001587. doi:10.2807/1560-7917.ES.2020.25.36.2001587

|                                                                                                                | Secondary attack |
|----------------------------------------------------------------------------------------------------------------|------------------|
| All settings, all contacts, including single ECEC outbreak                                                     | 1.2% (18/1448)   |
| All settings, all contacts, excluding single ECEC outbreak <sup>*</sup>                                        | 0.4% (5/1411)    |
| All settings, all child case to child contacts                                                                 | 0.3% (2/649)     |
| All settings, all child case to staff member contacts                                                          | 1.0% (1/103)     |
| All settings, all staff member case to child contacts                                                          | 1.5% (8/536)     |
| All settings, all staff member case to staff member contacts                                                   | 4·4% (7/160)     |
| All settings, all staff member case to child contact, excluding single ECEC outbreak $\stackrel{*}{=}$         | 0.2% (1/511)     |
| All settings, all staff member case to staff member contacts, excluding single ECEC outbreak $\stackrel{*}{-}$ | 0.7% (1/148)     |
| All settings, tested population                                                                                | 2.8% (18/633)    |
| All settings, tested population, excluding single ECEC outbreak                                                | 0.8% (5/598)     |
| All schools, all contacts                                                                                      | 0.5% (5/914)     |
| All schools, tested population                                                                                 | 1.3% (5/375)     |
| Single ECEC outbreak, $\stackrel{*}{-}$ all contacts                                                           | 35.1% (13/37)    |
| Child close contacts                                                                                           | 28.0% (7/25)     |
| Staff close contacts                                                                                           | 50.0% (6/12)     |

Macartney K, Quinn HE, Pillsbury AJ, et al. Transmission of SARS-CoV-2 in Australian educational settings: a prospective cohort study [published online ahead of print, 2020 Aug 3]. *Lancet Child Adolesc Health*. 2020;S2352-4642(20)30251-0. doi:10.1016/S2352-4642(20)30251-0


# COVID-19 in schools and early childhood education and care services – the Term 2 experience in NSW

Prepared by the National Centre for Immunisation Research and Surveillance (NCIRS) 31 July 2020

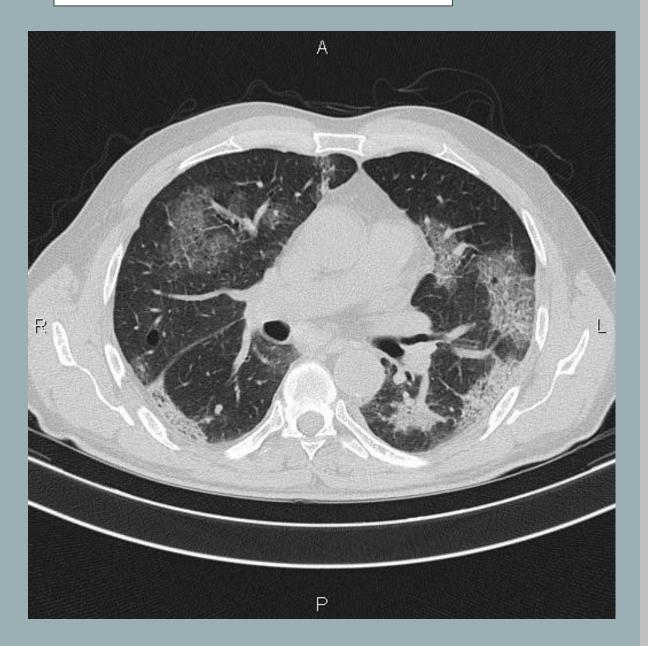
### **Overview**

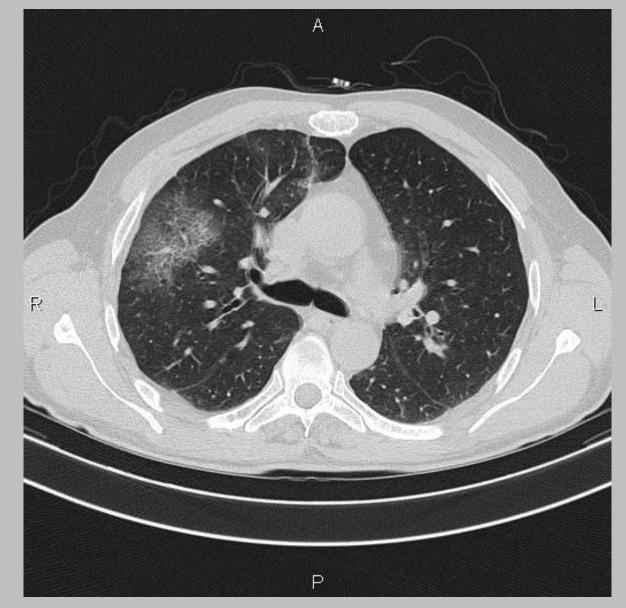
- This report provides an overview of investigation into all COVID-19 cases in the state of New South Wales (NSW), Australia in all schools and early childhood education and care (ECEC) services between 10 April 2020 and 3 July 2020 (school term 2 of the academic year).
- 6 individuals (4 students and 2 staff members) from 6 educational settings (5 schools and 1 ECEC service) were confirmed as primary COVID-19 cases who had an opportunity to transmit the SARS-CoV-2 virus to others in their school or ECEC service.
- 521 individuals (459 students and 62 staff members) were identified as close contacts of these primary 6 cases.
- No secondary cases were reported in any of the 6 educational settings.
- In Term 2 no student or staff member contracted COVID-19 from a school or ECEC setting.

## Replacing other Viruses

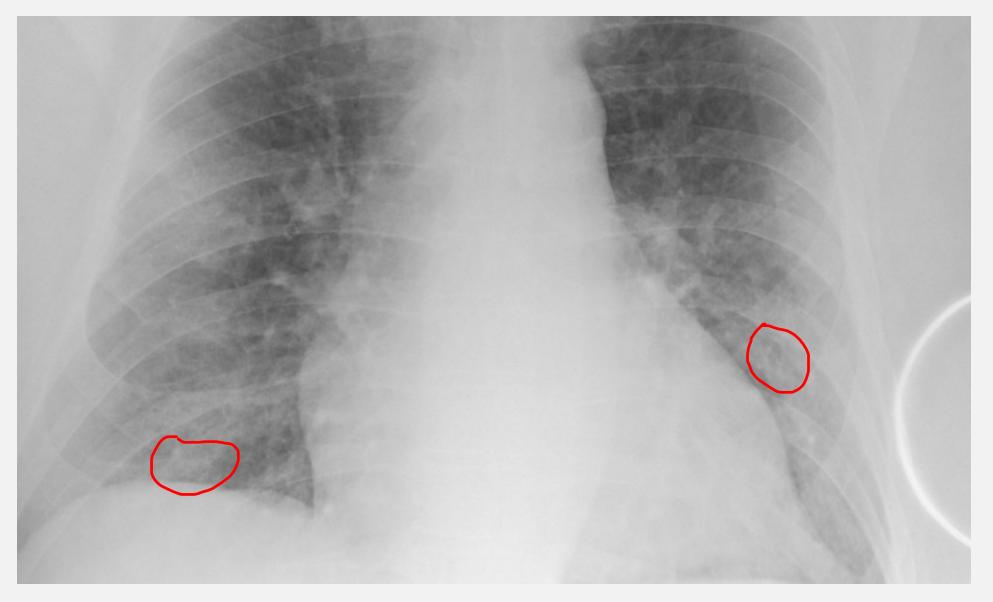


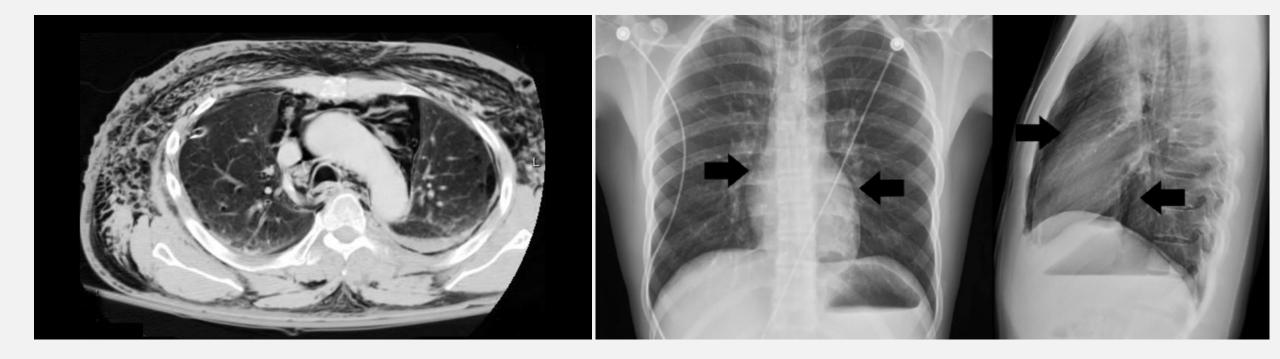
Karoline Leuzinger, Tim Roloff, Rainer Gosert, et al. Epidemiology of Severe Acute Respiratory Syndrome Coronavirus 2 Emergence Amidst Community-Acquired Respiratory Viruses, *The Journal of Infectious Diseases*, Volume 222, Issue 8, 15 October 2020, Pages 1270– 1279.


# CLINICAL FEATURES – COVID 19


- Fever, chills, sweats, hot/cold feeling
- Malaise, myalgias, arthralgias, immense fatigue "laid up in bed"
- Headache sometimes quite severe
- Nasal congestion or "allergies acting up" / "Sinus infection"
- Sore throat
- Loss of appetite, taste and smell alteration, nausea/vomiting
- Cough, particularly with deep breathing and activity
- Shortness of breath with minor activity or at rest
- Initial 5-7 days of general symptoms, then dyspnea: "viral replication phase" and "inflammatory phase" / ARDS phase
- Cutaneous manifestations chill blain like lesions, livedo reticularis, purpurae

# LABORATORY FEATURES


- Procalcitonin almost always less than 0.25, CRP always elevated
- Absolute lymphopenia about 80% of patients, less than 1000 cells/microliter
- Elevations in AST, ALT, Bilirubin: 10-20%
- Elevation in Cr (mild, moderate, severe): 1%, 4%, 9%
- Leukocytosis: 6%, uncommon, tends to develop late, signals deterioration
- Leukopenia: 33%
- Elevated Ferritin in most active patients, sometimes dramatic
- High LDH and Fibrinogen, D dimer, in almost all active patients


## RADIOGRAPHIC FEATURES – CT scan





### CHEST X RAY





# Pneumomediastinum / Pneumothorax

| DAD                                                              |                            | 28 | 230<br>(87) |             |
|------------------------------------------------------------------|----------------------------|----|-------------|-------------|
|                                                                  | Acute                      |    |             | 53 (23)     |
|                                                                  | Acute-<br>Proliferative    |    |             | 77 (33)     |
|                                                                  | Proliferative              |    |             | 18 (8)      |
|                                                                  | Proliferative-<br>Fibrotic |    |             | 1 (0)       |
|                                                                  | Fibrotic                   |    |             | 1 (0)       |
| Interstitial/alveolar edema                                      |                            |    |             | 86<br>(33)  |
| Interstitial lymphocytic infiltrate                              |                            |    |             | 152<br>(58) |
| Pneumocyte reactive<br>hyperplasia                               |                            |    |             | 143<br>(54) |
| Multinucleated giant cells                                       |                            |    |             | 52 (20)     |
| Alveolar/capillary<br>megakaryocytes                             |                            |    |             | 50 (19)     |
| Arteriolar vascular<br>microthrombi                              |                            |    |             | 123<br>(47) |
| Alveolar/interstitial thickening                                 |                            |    |             | 52 (20)     |
| Pulmonary/alveolar<br>hemorrhage                                 |                            |    |             | 52 (20)     |
| Vasculitis necrotizing/non-<br>necrotizing                       |                            |    |             | 44 (17)     |
| Bronchial/bronchiolar<br>inflammation                            |                            |    |             | 21 (8)      |
| Tracheobronchial inflammation                                    |                            |    |             | 64 (24)     |
| Acute bronchopneumonia<br>(aspiration or secondary<br>infection) |                            |    |             | 30 (11)     |

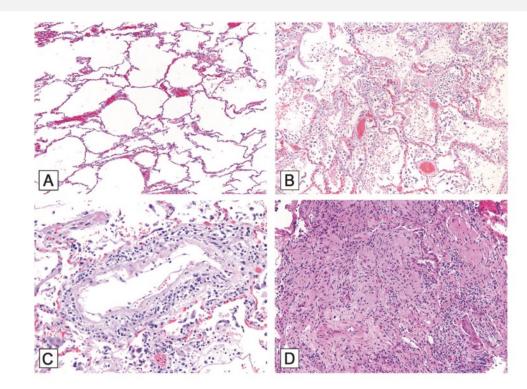



Fig. 1 Histopathologic findings of COVID-19 in the lung. A Normal lung with open alveoli and delicate alveolar septa containing thin capillaries lined by an attenuated alveolar epithelium (hematoxylin-eosin; original magnification  $\times 200$ ). B Acute diffuse alveolar damage (DAD) with hyaline membranes lining alveolar spaces, pneumocyte hyperplasia, desquamation of alveolar epithelial cells into the alveolar spaces,

inflammatory infiltrates, and capillary congestion (hematoxylin-eosin; original magnification  $\times 200$ ). C Perivascular inflammation (hematoxylin-eosin; original magnification  $\times 400$ ). D Organizing pneumonia with granulation tissue plugs within the lumen of respiratory bronchioles (hematoxylin-eosin; original magnification  $\times 200$ ).

Caramaschi S, Kapp ME, Miller SE, Eisenberg R, Johnson J, Epperly G, Maiorana A, Silvestri G, Giannico GA. Histopathological findings and clinicopathologic correlation in COVID-19: a systematic review. Mod Pathol. 2021 Sep;34(9):1614-1633. doi: 10.1038/s41379-021-00814-w. Epub 2021 May 24. PMID: 34031537; PMCID: PMC8141548.

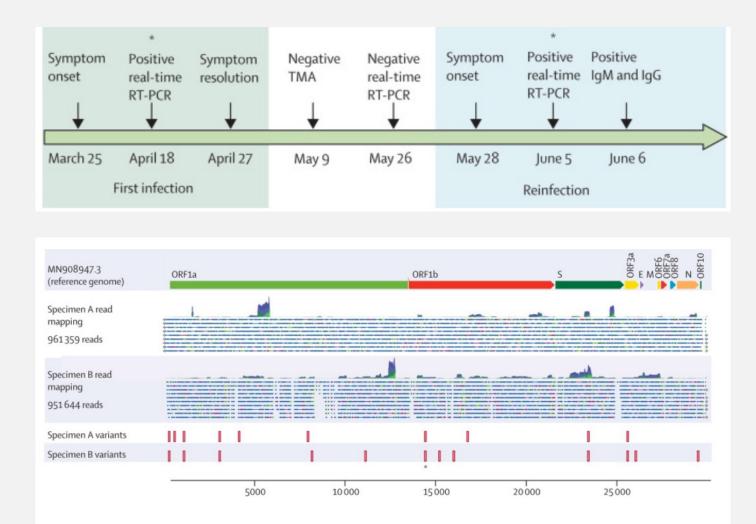
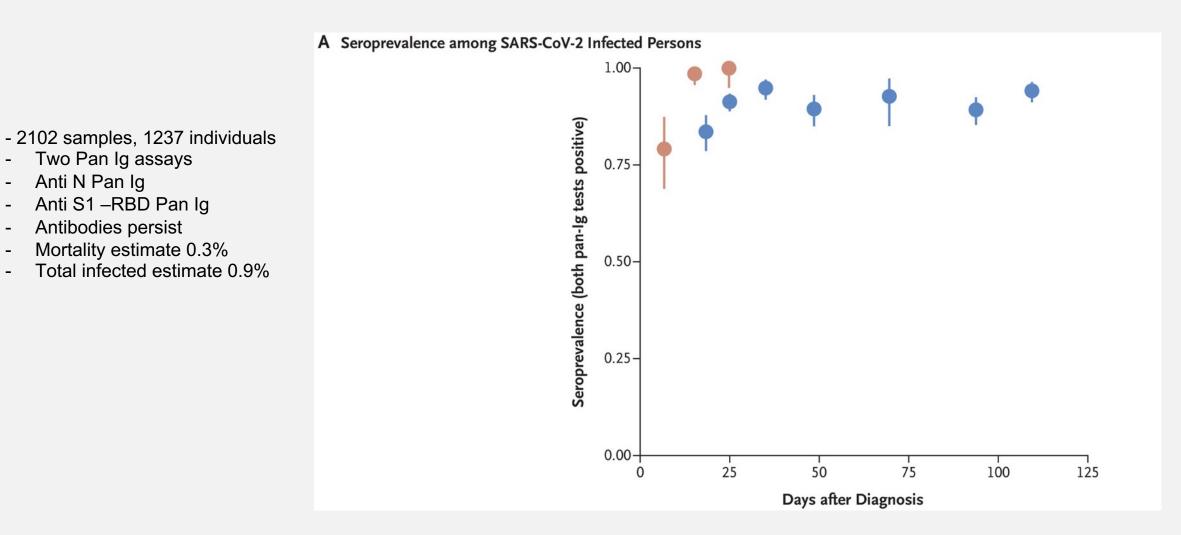



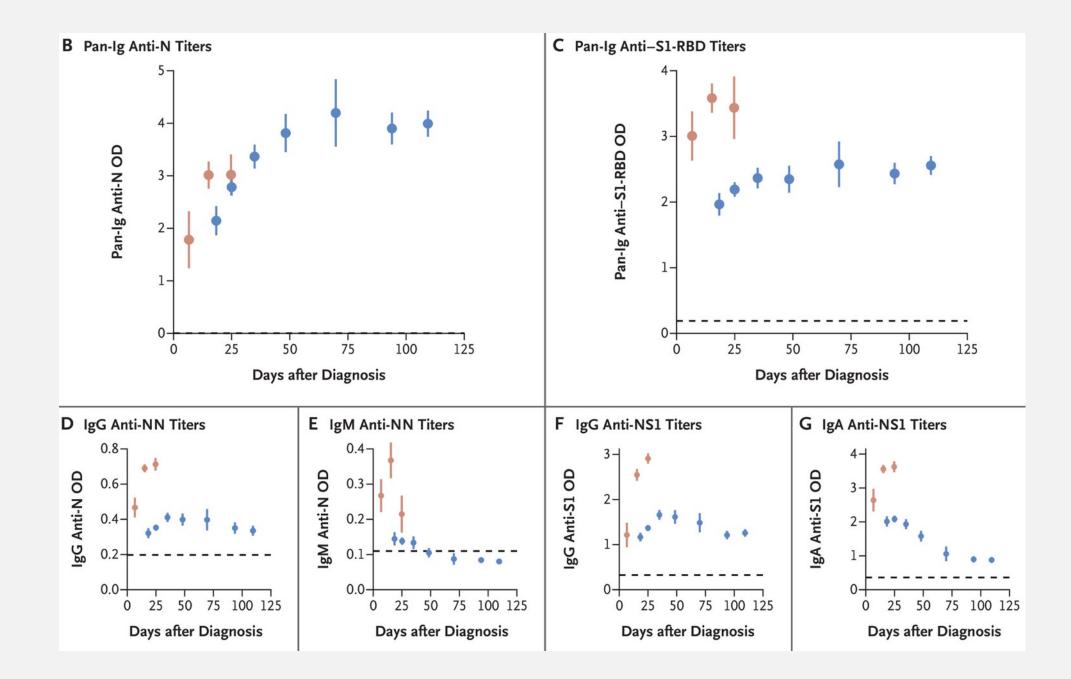

Figure 2 Variant mapping of specimens A and B against the reference

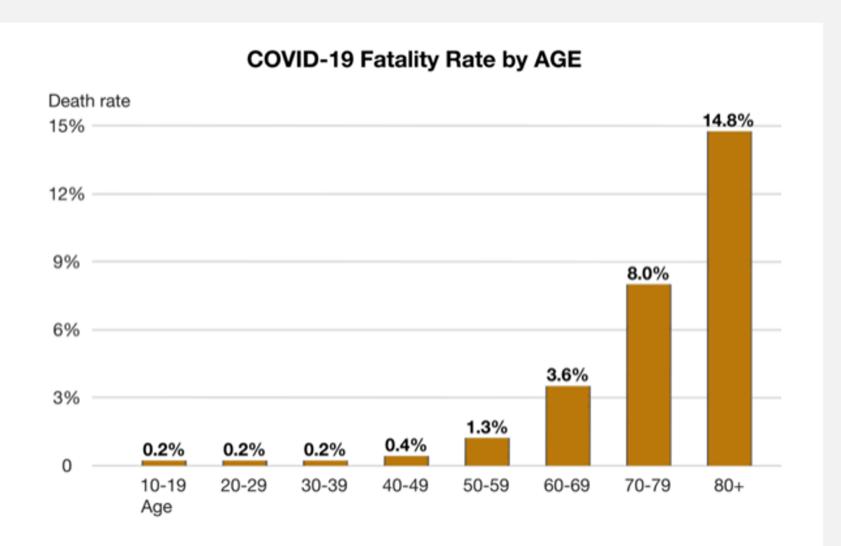
genome

Genomic evidence for reinfection with SARS-CoV-2: a case study <u>Richard L Tillett, PhD Joel R Sevinsky, PhD Paul D Hartley, PhD Heather Kerwin,</u> <u>MPH Natalie Crawford, MD Andrew Gorzalski, PhD</u>. Lancet. Oct 12, 2020

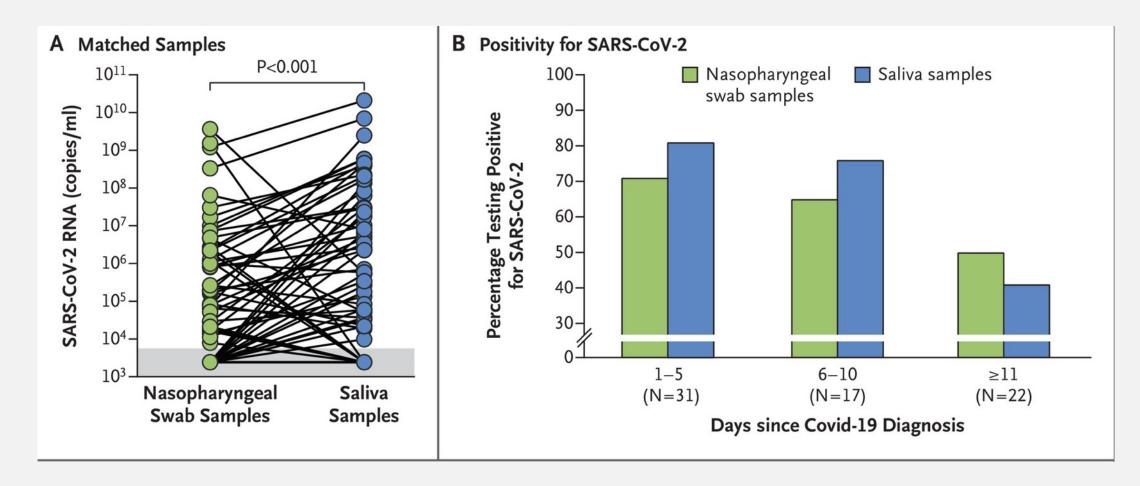


Daniel F. Gudbjartsson, Ph.D., Gudmundur L. Norddahl, Ph.D., Pall Melsted, Ph.D., Humoral Immune Response to SARS-CoV-2 in Iceland. NEJM. September 1, 2020 DOI: 10.1056/NEJMoa2026116


-


-

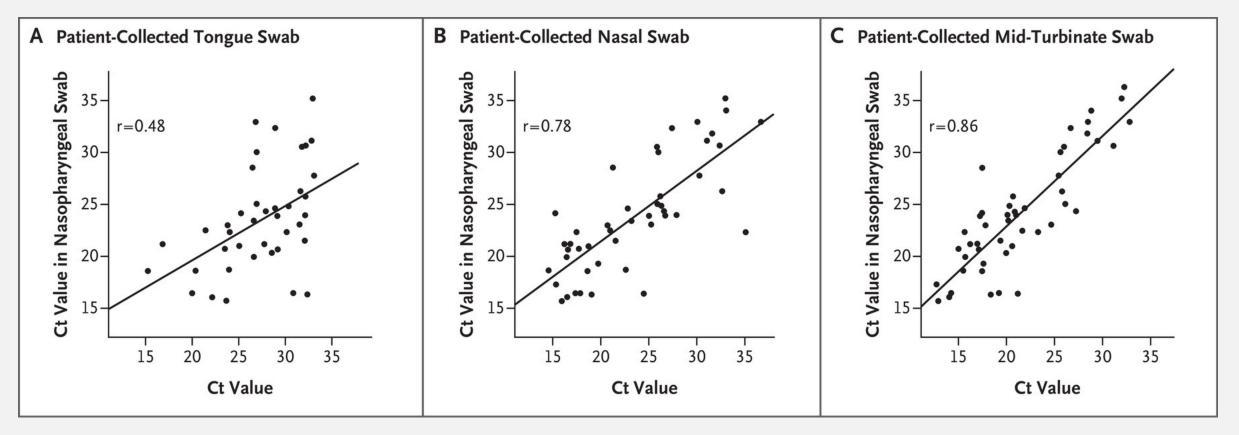
-


-

\_

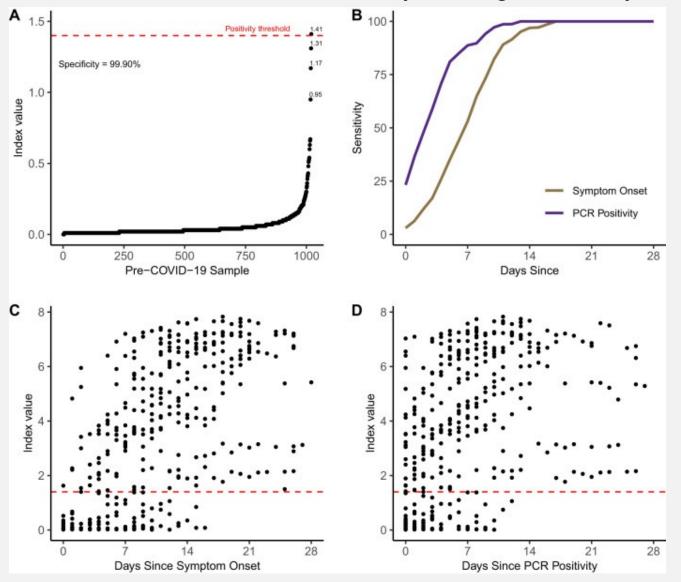




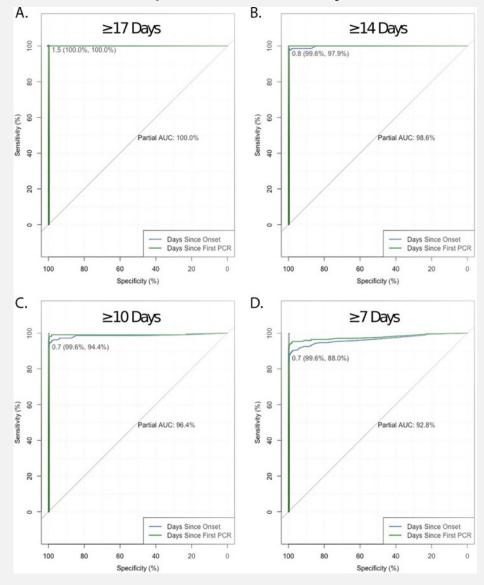

Acceptable sensitivity and specificity of saliva samples instead of NP samples in patients with COVID 19: active disease, not asymptomatic persons



A.L Willey et al. Saliva specimens to detect SARS-CoV – 2 Infection. NEJM. Aug 28, 2020.


# Patient-collected swabs from tongue, nose or mid-turbinate are nearly equivalent in sensitivity to HCP collected NP swabs

Approximately 90% sensitivity of self collected specimens relative to HCP collected specimens.



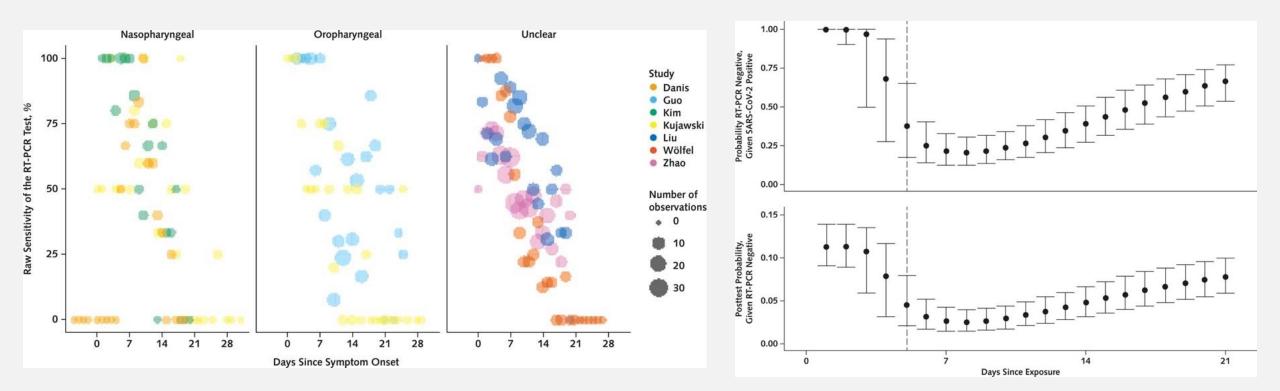

Y.P. Tu et al. Patient – collected swabs for SARS-CoV 2 testing. N Engl J Med 2020; 383:494-496

### The ABBOTT Antibody test / IgG is nearly 100% sensitive and specific at 17 days



Bryan A, Pepper G, Wener MH, et al. Performance Characteristics of the Abbott Architect SARS-CoV-2 IgG Assay and Seroprevalence in Boise, Idaho. *J Clin Microbiol*. 2020;58(8):e00941-20. Published 2020 Jul 23. doi:10.1128/JCM.00941-20




### ABBOTT RELEASES INTERIM CLINICAL STUDY DATA ON ID NOW COVID-19 RAPID TEST SHOWING STRONG AGREEMENT TO LAB-BASED MOLECULAR PCR TESTS

- Urgent care clinic study shows ID NOW test performance of  $\geq$  94.7% positive agreement (sensitivity) and  $\geq$  98.6% negative agreement (specificity) compared to lab-based PCR reference tests

- The Everett Clinic study shows 91.3% positive agreement and 100% negative agreement
- Ongoing study of hospitalized and nursing home patients tested with late symptom onset shows  $\geq 83.3\%$  positive agreement and  $\geq 96.5\%$  negative agreement
- Abbott's studies suggest ID NOW performs best in patients tested earlier post symptom onset
- ID NOW delivers results in minutes rather than days and is helping reduce the spread of infection by detecting more positive patients faster than would otherwise be the case

# Cepheid Receives Emergency Use Authorization For SARS-CoV-2, Flu A, Flu B and RSV Combination Test

Challenged by Similar Clinical Presentations, Accurate Detection & Differentiation of all 4 Viruses is Critical for Clinicians This Flu Season SUNNYVALE, Calif., Sept. 29, 2020 /PRNewswire/ -- Cepheid today announced it has received Emergency Use Authorization (EUA) from the U.S. Food & Drug Administration (FDA) for Xpert<sup>®</sup> Xpress **SARS-CoV-2/Flu/RSV**, a rapid molecular diagnostic test for qualitative detection of the viruses causing COVID-19, Flu A, Flu B, and RSV infections from a single patient sample. The four-in-one test is designed for use on any of Cepheid's over 26,000 GeneXpert<sup>®</sup> Systems placed worldwide, with results delivered in approximately 36 minutes. False Negative RT-PCR from upper respiratory samples in COVID 19 patients

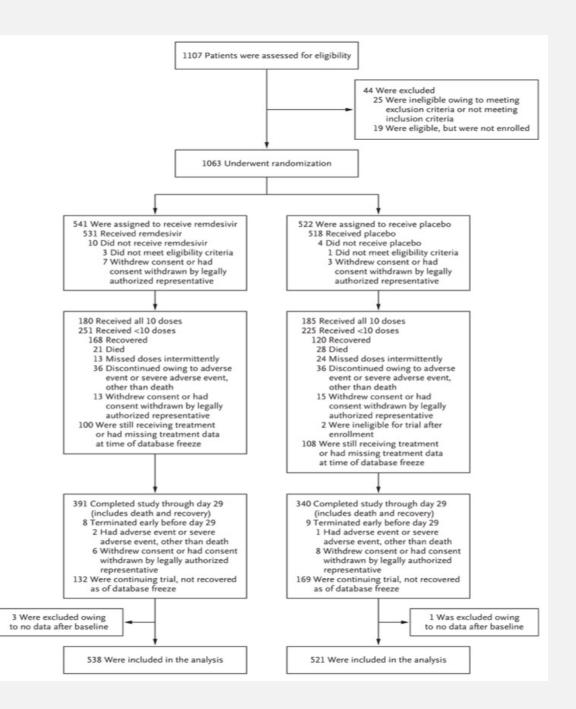


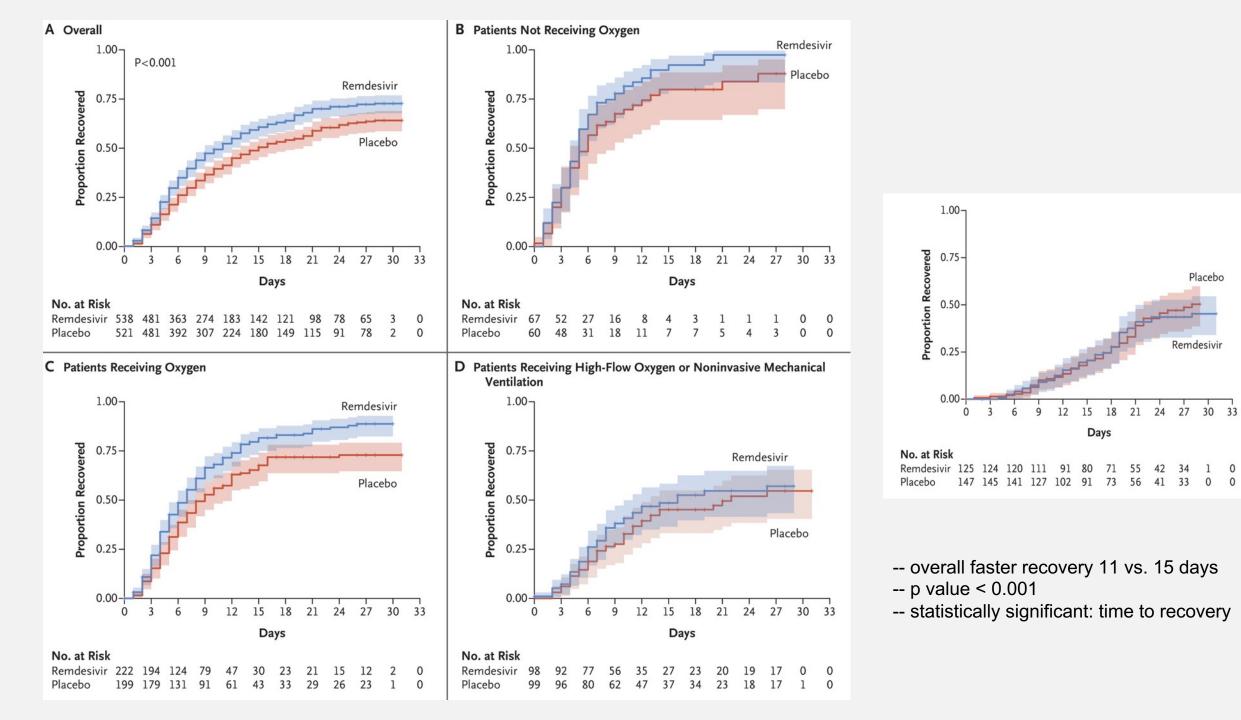
L.M. Kucirka M.D., Ph.D et al. Variation in False-Negative Rate of Reverse Transcriptase Polymerase Chain Reaction–Based SARS-CoV-2 Tests by Time Since Exposure. Annals of Internal Medicine 2020 173:4, 262-267

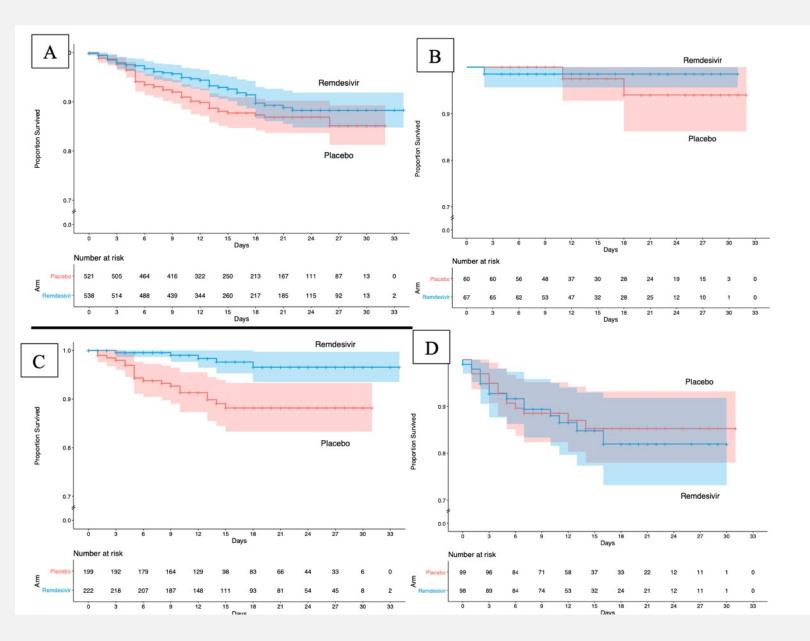
# State of the Art Management

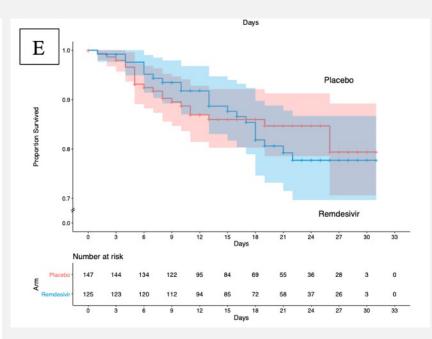
- Anti-viral therapy: Remdesivir, Convalescent plasma, Lopinavir-Ritonavir, HCQ, Ivermectin, mAb
- Anti-inflammatory therapy: dexamethasone, IL 6 inhibition, JAK inhibition
- Anti-coagulation: therapeutic versus prophylactic, or somewhere in between!
- Supportive care euglycemia, GI prophylaxis
- Laboratory and Imaging suggested

-- ACTT - 1


-- Broadly generalizable


- -- similar degree of drop outs, withdrawn consent, adverse effects
- -- study ongoing at the time of interim data analysis led to stopping


Baseline status well balanced between active and placebo groups


| Characteristic                                                                                                                                   | All<br>(N=1063) | Remdesivir<br>(N=541) | Placebo<br>(N=522) |
|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------------|--------------------|
| Score on ordinal scale — no. (%)                                                                                                                 |                 |                       |                    |
| <ol> <li>Hospitalized, not requiring<br/>supplemental oxygen, requiring<br/>ongoing medical care (Covid-19–<br/>related or otherwise)</li> </ol> | 127 (11.9)      | 67 (12.4)             | 60 (11.5)          |
| 5. Hospitalized, requiring supplemental oxygen                                                                                                   | 421 (39.6)      | 222 (41.0)            | 199 (38.1)         |
| <ol> <li>Hospitalized, receiving noninvasive<br/>ventilation or high-flow oxygen<br/>devices</li> </ol>                                          | 197 (18.5)      | 98 (18.1)             | 99 (19.0)          |
| 7. Hospitalized, receiving invasive mechanical ventilation or ECMO                                                                               | 272 (25.6)      | 125 (23.1)            | 147 (28.2)         |

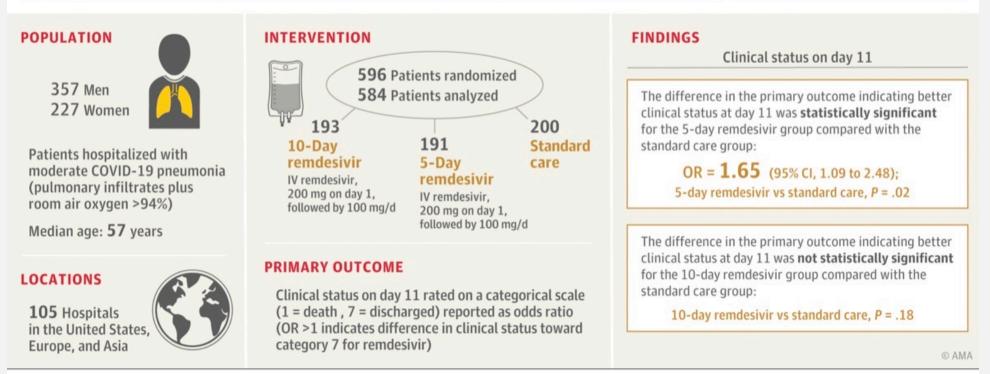
J. H. Biegel MD, K.M. Tomashek MD, L.E. Dodd PhD et al. Remdesivir for the treatment of COVID-19 – Preliminary report. NEJM. May 22, 2020. ACCT-1 Study Group.



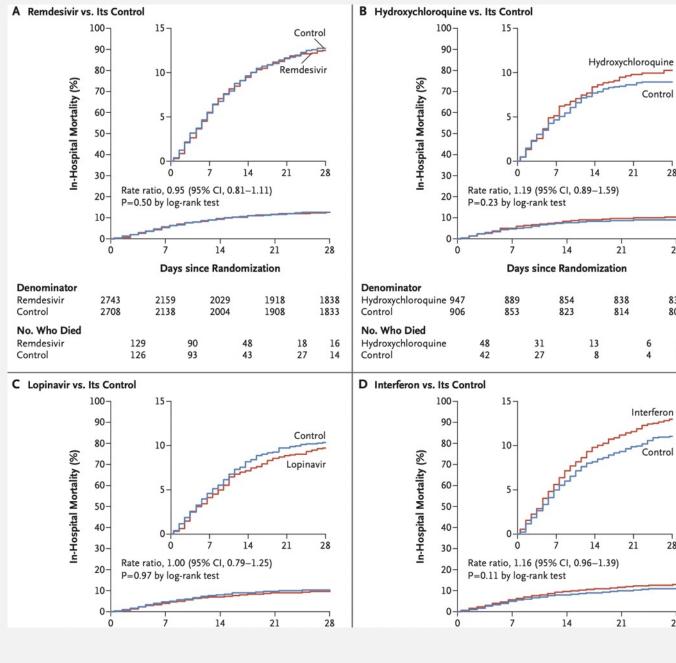







- A overall population
- B hospitalized but no oxygen
- C hospitalized with low flow oxygen
- D high flow / BIPAP
- E mechanical ventilation / ECMO

|                                                              | Overall               |                     |                      |                   | Ordinal Score at Baseline |                    |                      |                     |                       |                     |
|--------------------------------------------------------------|-----------------------|---------------------|----------------------|-------------------|---------------------------|--------------------|----------------------|---------------------|-----------------------|---------------------|
|                                                              |                       |                     | 4 5                  |                   | 5                         | 6                  |                      | 7                   |                       |                     |
|                                                              | Remdesivir<br>(N=541) | Placebo<br>(N=521)  | Remdesivir<br>(N=75) | Placebo<br>(N=63) | Remdesivir<br>(N=232)     | Placebo<br>(N=203) | Remdesivir<br>(N=95) | Placebo<br>(N=98)   | Remdesivir<br>(N=131) | Placebo<br>(N=154)  |
| Recovery                                                     |                       |                     |                      |                   |                           |                    |                      |                     |                       |                     |
| No. of recoveries                                            | 399                   | 352                 | 73                   | 58                | 206                       | 156                | 57                   | 61                  | 63                    | 77                  |
| Median time to recovery<br>(95% CI) — days                   | 10 (9–11)             | 15 (13–18)          | 5 (4-6)              | 6 (4–7)           | 7 (6–8)                   | 9 (7–10)           | 15 (10– 27)          | 20 (14-26)          | 29 (24–NE)            | 28 (24–NE)          |
| Rate ratio (95% CI)†                                         | 1.29 (1.12–1.         | 49 [P<0.001])       | 1.29 (0.9            | 91–1.83)          | 1.45 (1.1                 | 18–1.79)           | 1.09 (0.2            | 76–1.57)            | 0.98 (0.              | 70–1.36)            |
| Mortality through day 14‡                                    |                       |                     |                      |                   |                           |                    |                      |                     |                       |                     |
| Hazard ratio for data through day 15 (95% CI)                | 0.55 (0.3             | 36–0.83)            | 0.42 (0.0            | )4–4.67)          | 0.28 (0.1                 | 12–0.66)           | 0.82 (0.4            | 40–1.69)            | 0.76 (0.              | 39–1.50)            |
| No. of deaths by day 15                                      | 35                    | 61                  | 1                    | 2                 | 7                         | 21                 | 13                   | 17                  | 14                    | 21                  |
| Kaplan–Meier estimate of mortality<br>by day 15 — % (95% CI) | 6.7<br>(4.8–9.2)      | 11.9<br>(9.4–15.0)  | 1.3<br>(0.2–9.1)     | 3.2<br>(0.8–12.1) | 3.1<br>(1.5–6.4)          | 10.5<br>(7.0–15.7) | 14.2<br>(8.5–23.2)   | 17.3<br>(11.2–26.4) | 10.9<br>(6.6–17.6)    | 13.8<br>(9.2–20.4)  |
| Mortality over entire study period $\ddagger$                |                       |                     |                      |                   |                           | ~                  |                      |                     |                       |                     |
| Hazard ratio (95% CI)                                        | 0.73 (0.5             | 52–1.03)            | 0.82 (0.17-4.07)     |                   | 0.30 (0.14-0.64)          |                    | 1.02 (0.54–1.91)     |                     | 1.13 (0.67–1.89)      |                     |
| No. of deaths by day 29                                      | 59                    | 77                  | 3                    | 3                 | 9                         | 25                 | 19                   | 20                  | 28                    | 29                  |
| Kaplan–Meier estimate of mortality<br>by day 29 — % (95% CI) | 11.4<br>(9.0–14.5)    | 15.2<br>(12.3–18.6) | 4.1<br>(1.3–12.1)    | 4.8<br>(1.6–14.3) | 4.0<br>(2.1–7.5)          | 12.7<br>(8.8–18.3) | 21.2<br>(14.0–31.2)  | 20.4<br>(13.7–29.8) | 21.9<br>(15.7–30.1)   | 19.3<br>(13.8–26.5) |
| Ordinal score at day 15 (±2 days) —<br>no. (%)∬              |                       |                     |                      |                   |                           |                    |                      |                     |                       |                     |
| 1                                                            | 157 (29.0)            | 115 (22.1)          | 38 (50.7)            | 28 (44.4)         | 90 (38.8)                 | 62 (30.5)          | 18 (18.9)            | 14 (14.3)           | 11 (8.4)              | 11 (7.1)            |
| 2                                                            | 117 (21.6)            | 102 (19.6)          | 20 (26.7)            | 15 (23.8)         | 70 (30.2)                 | 58 (28.6)          | 22 (23.2)            | 19 (19.4)           | 5 (3.8)               | 10 (6.5)            |
| 3                                                            | 14 (2.6)              | 8 (1.5)             | 8 (10.7)             | 4 (6.3)           | 6 (2.6)                   | 4 (2.0)            | 0                    | 0                   | 0                     | 0                   |
| 4                                                            | 38 (7.0)              | 33 (6.3)            | 3 (4.0)              | 7 (11.1)          | 17 (7.3)                  | 13 (6.4)           | 12 (12.6)            | 4 (4.1)             | 6 (4.6)               | 9 (5.8)             |
| 5                                                            | 58 (10.7)             | 60 (11.5)           | 3 (4.0)              | 5 (7.9)           | 25 (10.8)                 | 18 (8.9)           | 2 (2.1)              | 14 (14.3)           | 28 (21.4)             | 23 (14.9)           |
| 6                                                            | 28 (5.2)              | 24 (4.6)            | 1 (1.3)              | 0                 | 5 (2.2)                   | 7 (3.4)            | 12 (12.6)            | 11 (11.2)           | 10 (7.6)              | 6 (3.9)             |
| 7                                                            | 95 (17.6)             | 121 (23.2)          | 1 (1.3)              | 3 (4.8)           | 13 (5.6)                  | 21 (10.3)          | 16 (16.8)            | 20 (20.4)           | 57 (43.5)             | 74 (48.1)           |
| 8                                                            | 34 (6.3)              | 58 (11.1)           | 1 (1.3)              | 1 (1.6)           | 6 (2.6)                   | 20 (9.9)           | 13 (13.7)            | 16 (16.3)           | 14 (10.7)             | 21 (13.6)           |
| Odds ratio (95% CI)                                          | 1.5 (1.               | 2–1.9)              | 1.5 (0.              | 8–2.7)            | 1.6 (1.                   | 2–2.3)             | 1.4 (0.              | .9–2.3)             | 1.2 (0.               | .8–1.9)             |




**QUESTION** Does remdesivir provide a benefit on clinical status for patients hospitalized with moderate COVID-19 pneumonia?

**CONCLUSION** This clinical trial found that hospitalized patients with moderate COVID-19 randomized to a 5-day course, but not a 10-day course, of remdesivir had a statistically significant better clinical status vs standard care at 11 days, but the difference was of uncertain clinical importance.



Spinner CD, Gottlieb RL, Criner GJ, et al; for the GS-US-540-5774 Investigators. Effect of remdesivir vs standard care on clinical status at 11 days in patients with moderate COVID-19: a randomized clinical trial. JAMA. Published online August 21, 2020. doi:10.1001/jama.2020.16349

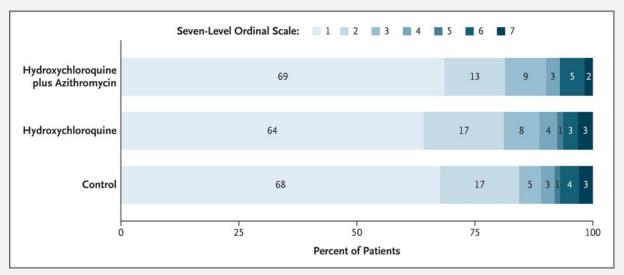


| Subgroup                                     | Active Treatment       | Control              | No. of D | tatistics for<br>eaths in<br>ment Group<br>Variance | Rate Ratio for I<br>(99% CI; 95% CI |                   |
|----------------------------------------------|------------------------|----------------------|----------|-----------------------------------------------------|-------------------------------------|-------------------|
|                                              | no. of deaths reported | /no. of patients (%) |          | ranance                                             |                                     |                   |
| Remdesivir                                   |                        | , ,, ,,              |          |                                                     |                                     |                   |
| Age at entry                                 |                        |                      |          |                                                     | 1                                   |                   |
| <50 yr                                       | 61/961 (6.9)           | 59/952 (6.8)         | 2.3      | 29.8                                                |                                     | - 1.08 (0.67-1.73 |
| 50-69 yr                                     | 154/1282 (13.8)        | 161/1287 (14.2)      | -7.6     | 77.5                                                |                                     | 0.91 (0.68-1.2)   |
| ≥70 yr                                       | 86/500 (20.5)          | 83/469 (21.6)        | -2.9     | 41.5                                                | _                                   | 0.93 (0.63-1.39   |
| Respiratory support at entry                 |                        | .,,                  |          |                                                     | 1                                   |                   |
| No mechanical ventilation                    | 203/2489 (9.4)         | 232/2475 (10.6)      | -15.8    | 108.0                                               | -                                   | 0.86 (0.67-1.11   |
| Mechanical ventilation                       | 98/254 (43.0)          | 71/233 (37.8)        | 7.6      | 40.8                                                |                                     | - 1.20 (0.80-1.80 |
| Total                                        | 301/2743 (12.5)        | 303/2708 (12.7)      | -8.3     | 148.8                                               |                                     | 0.95 (0.81-1.11   |
| Heterogeneity around total: $\chi_3^2=3.9$   |                        | , , , ,              |          |                                                     | Ţ                                   | P=0.50            |
| Hydroxychloroquine                           |                        |                      |          |                                                     |                                     |                   |
| Age at entry                                 |                        |                      |          |                                                     |                                     |                   |
| <50 yr                                       | 19/335 (5.7)           | 19/317 (5.8)         | 0.9      | 9.2                                                 |                                     | ▶ 1.10 (0.47-2.57 |
| 50-69 yr                                     | 55/410 (12.1)          | 31/396 (7.1)         | 10.8     | 21.2                                                |                                     | → 1.66 (0.95-2.91 |
| ≥70 yr                                       | 30/202 (14.0)          | 34/193 (17.8)        | -3.5     | 15.8                                                |                                     | 0.80 (0.42-1.53   |
| Respiratory support at entry                 |                        | ,,                   |          |                                                     |                                     |                   |
| No mechanical ventilation                    | 69/862 (7.4)           | 57/824 (6.6)         | 4.7      | 31.4                                                | _                                   | - 1.16 (0.73-1.84 |
| Mechanical ventilation                       | 35/85 (39.2)           | 27/82 (32.3)         | 3.4      | 14.8                                                |                                     | ▶ 1.26 (0.65-2.46 |
| Total                                        | 104/947 (10.2)         | 84/906 (8.9)         | 8.1      | 46.2                                                |                                     | 1.19 (0.89-1.59   |
| Heterogeneity around total: $\chi_3^2=5.0$   |                        |                      |          |                                                     | T                                   | P=0.23            |
| Lopinavir                                    |                        |                      |          |                                                     |                                     |                   |
| Age at entry                                 |                        |                      |          |                                                     |                                     |                   |
| <50 yr                                       | 20/511 (3.6)           | 27/501 (4.9)         | -3.0     | 11.7 -                                              |                                     | 0.77 (0.36-1.64   |
| 50-69 yr                                     | 66/597 (9.8)           | 57/596 (9.1)         | 2.7      | 30.4                                                |                                     | - 1.09 (0.68-1.74 |
| ≥70 yr                                       | 62/291 (20.4)          | 62/275 (22.7)        | 0.0      | 30.2                                                |                                     | 1.00 (0.63-1.60   |
| Respiratory support at entry                 | , , , ,                | , , ,                |          |                                                     |                                     |                   |
| No mechanical ventilation                    | 113/1287 (8.1)         | 111/1258 (8.7)       | -1.6     | 55.6                                                | _                                   | 0.97 (0.69-1.37   |
| Mechanical ventilation                       | 35/112 (28.1)          | 35/114 (28.7)        | 1.3      | 16.7                                                |                                     | ▶ 1.08 (0.57-2.03 |
| Total                                        | 148/1399 (9.7)         | 146/1372 (10.3)      | -0.4     | 72.3                                                | $\diamond$                          | 1.00 (0.79-1.25   |
| Heterogeneity around total: $\chi_3^2 = 1.2$ |                        |                      |          |                                                     |                                     | P=0.97            |
| nterferon                                    |                        |                      |          |                                                     |                                     |                   |
| Age at entry                                 |                        |                      |          |                                                     |                                     |                   |
| <50 yr                                       | 48/720 (7.5)           | 35/697 (5.3)         | 7.5      | 20.6                                                |                                     | → 1.44 (0.82-2.54 |
| 50-69 yr                                     | 122/934 (14.3)         | 108/973 (11.4)       | 13.3     | 56.9                                                |                                     | - 1.26 (0.90-1.78 |
| ≥70 yr                                       | 73/396 (19.9)          | 73/380 (20.9)        | -4.0     | 35.8                                                |                                     | 0.89 (0.58-1.38   |
| Respiratory support at entry                 | ,                      |                      |          |                                                     |                                     |                   |
| No mechanical ventilation                    | 188/1911 (10.9)        | 176/1920 (9.5)       | 9.1      | 90.3                                                | -                                   | 1.11 (0.84-1.45   |
| Mechanical ventilation                       | 55/139 (42.4)          | 40/130 (33.8)        | 7.7      | 23.0                                                |                                     | → 1.40 (0.82-2.40 |
| Total                                        | 243/2050 (12.9)        | 216/2050 (11.0)      | 16.8     | 113.3                                               | $\Diamond$                          | 1.16 (0.96-1.39   |
| Heterogeneity around total: $\chi_3^2 = 4.8$ |                        |                      |          |                                                     | T                                   | P=0.11            |
| a,                                           |                        |                      |          | 0.0                                                 | 0.5 1.0 1.5                         | 2.0               |
|                                              |                        |                      |          |                                                     | 0.5 1.0 1.5                         | 2.0               |
|                                              |                        |                      |          | Active                                              | Treatment Control Be                | tter              |

WHO Solidarity Trial Consortium, Pan H, Peto R, Henao-Restrepo AM et al. Repurposed Antiviral Drugs for Covid-19 - Interim WHO Solidarity Trial Results. N Engl J Med. 2021 Feb 11;384(6):497-511. doi: 10.1056/NEJMoa2023184. Epub 2020 Dec 2. PMID: 33264556; PMCID: PMC7727327

Control

Interferon


Control

- SOLIDARITY trial used unambiguous end point of mortality
- Other trials used improvement, hospitalization duration and need for IMV surrogate outcomes
- The surrogate outcomes are subject to misclassification
- My personal opinion any real benefit is marginal
- Not cost effective

|                                            | Control      | Remde     | sivir    | Co       | ontrol   |           |          |           |           |     |    |           |          |          |
|--------------------------------------------|--------------|-----------|----------|----------|----------|-----------|----------|-----------|-----------|-----|----|-----------|----------|----------|
| Study, Year (Reference)                    |              | Events, n | Total, n | Events,  | n Total  | , n       |          | RR        |           |     |    | RR (95    | % CI)    |          |
| Beigel et al [ACTT-1], 2020 (5)            | Placebo      | 59        | 541      | 77       | 52       | 1         |          | <u></u> ] |           |     |    | 0.74 (0.5 | 4–1.01)  |          |
| Wang et al, 2020 (13)                      | Placebo      | 22        | 158      | 10       | 7        | 8         |          |           |           |     |    | 1.09 (0.5 | 4–2.18)  |          |
| Spinner et al [SIMPLE-2], 2020 (12)        | Usual care   | 2         | 193      | 4        | 20       | • •       |          |           |           |     |    | 0.52 (0.1 | 0–2.80)  |          |
| Pan et al [Solidarity], 2020 (4)           | Usual care   | 301       | 2743     | 303      | 270      | 8         |          |           |           |     |    | 0.98 (0.8 | 4–1.14)  |          |
|                                            |              |           |          |          |          |           |          |           |           |     |    |           |          |          |
| Fixed-effects model                        |              | 384       | 3635     | 394      | 350      | 17<br>    |          | •         |           |     | _  | 0.93 (0.8 | 2–1.06)  |          |
| Heterogeneity: $I^2 = 6\%$                 |              |           |          |          |          | 0.1       | 0.2      | 0.5 1     | 2         | 5   | 10 |           |          |          |
|                                            |              |           |          |          |          |           | vors Rem |           | Favors (  |     |    |           |          |          |
|                                            |              |           |          |          |          |           |          |           |           |     |    |           |          |          |
|                                            |              | Control   | _        | Remdes   |          |           | ntrol    | -         |           |     |    |           |          |          |
| Study, Year (Reference)                    |              |           | E        | vents, n | Total, n | Events, n | Total, n | 1         |           | RR  |    |           | RR (9    | 5% CI)   |
| No supplemental oxygen at baseline         |              |           |          |          |          |           |          |           |           |     |    |           |          |          |
| Beigel et al [ACTT-1], 2020 (5)            |              | Placebo   |          | 3        | 75       | 3         | 63       | <u> </u>  |           | *   |    |           | 0.84 (0. | 18-4.02) |
| Spinner et al [SIMPLE-2], 2020 (12)        |              | Usual car | re       | 2        | 193      | 4         | 200      |           |           |     |    |           | 0.52 (0. | 10-2.80) |
| Pan et al [Solidarity], 2020 (4)           |              | Usual car | e        | 11       | 661      | 13        | 664      |           |           |     | _  |           |          | 38-1.88) |
| Fixed-effects model                        |              |           |          | 16       | 929      | 20        | 927      |           |           |     |    |           | 0.78 (0. | 41-1.50) |
| Heterogeneity: <i>I</i> <sup>2</sup> = 0%  |              |           |          |          |          |           |          |           |           |     |    |           |          |          |
| Supplemental oxygen and not ventil         | ated at base | line      |          |          |          |           |          |           |           |     |    |           |          |          |
| Beigel et al [ACTT-1], 2020 (5)            |              | Placebo   |          | 9        | 232      | 25        | 203      |           |           |     |    |           | 0.32 (0. | 15-0.66) |
| Wang et al, 2020 (13)                      |              | Placebo   |          | 11       | 129      | 7         | 68       |           |           |     | _  |           | 0.83 (0. | 34-2.04) |
| Pan et al [Solidarity], 2020 (4)           |              | Usual car | re       | 192      | 1828     | 219       | 1811     |           |           | +   |    |           | 0.87 (0. | 72-1.04) |
| Fixed-effects model                        |              |           |          | 212      | 2189     | 251       | 2082     |           |           | •   |    |           | 0.81 (0. | 68-0.96) |
| Heterogeneity: <i>I</i> <sup>2</sup> = 71% |              |           |          |          |          |           |          |           |           |     |    |           |          |          |
| Ventilated or ECMO at baseline             |              |           |          |          |          |           |          |           |           |     |    |           |          |          |
| Beigel et al [ACTT-1], 2020 (5): high      | -flow        | Placebo   |          | 19       | 95       | 20        | 98       |           |           | -   | _  |           | 0.98 (0. | 56–1.72) |
| oxygen or noninvasive ventilation          |              |           |          |          |          |           |          |           |           |     |    |           |          |          |
| Beigel et al [ACTT-1], 2020 (5): vent      | ilation      | Placebo   |          | 28       | 131      | 29        | 154      |           |           |     | -  |           | 1.14 (0. | 71–1.81) |
| Wang et al, 2020 (13)                      |              | Placebo   |          | 11       | 29       | 3         | 10       |           |           | -+- |    | _         | 1.26 (0. | 44–3.63) |
| Pan et al [Solidarity], 2020 (4)           |              | Usual car | re       | 98       | 254      | 71        | 233      |           |           |     | -  |           | 1.27 (0. | 99–1.62) |
| Fixed-effects model                        |              |           |          | 156      | 509      | 123       | 495      |           |           | •   |    |           | 1.19 (0. | 98–1.46) |
| Heterogeneity: I <sup>2</sup> = 0%         |              |           |          |          |          |           |          |           |           |     |    |           | _        |          |
|                                            |              |           |          |          |          |           |          | 0.1       | 0.5       | 1   | 2  |           | 10       |          |
|                                            |              |           |          |          |          |           |          |           | emdesivir | •   | _  | Control   |          |          |

Kaka AS, MacDonald R, Greer N, Vela K, Duan-Porter W, Obley A, Wilt TJ. Major Update: Remdesivir for Adults With COVID-19 : A Living Systematic Review and Meta-analysis for the American College of Physicians Practice Points. Ann Intern Med. 2021 May;174(5):663-672. doi: 10.7326/M20-8148. Epub 2021 Feb 9. Erratum in: Ann Intern Med. 2021 Mar 16;: PMID: 33560863; PMCID: PMC7901604.

### Hydroxychloroquine: The distraction.



-- mild to moderate disease: either no oxygen or oxygen less than 4 liters via low flow nasal cannula

- -- 15 day ordinal scale assessment
- -- early initiation of therapy: 7 days

### <u>Hydroxychloroquine with or without Azithromycin in Mild-to-Moderate Covid-19</u> Cavalcanti A.B., Zampieri F.G., Rosa R.G., et al. 10.1056/NEJMoa2019014

| Analysis                                          | Intubation or Death |
|---------------------------------------------------|---------------------|
| No. of events/no. of patients at risk (%)         |                     |
| Hydroxychloroquine                                | 262/811 (32.3)      |
| No hydroxychloroquine                             | 84/565 (14.9)       |
| Crude analysis — hazard ratio (95% CI)            | 2.37 (1.84-3.02)    |
| Multivariable analysis — hazard ratio (95% CI)*   | 1.00 (0.76–1.32)    |
| Propensity-score analyses — hazard ratio (95% CI) |                     |
| With inverse probability weighting †              | 1.04 (0.82–1.32)    |
| With matching:                                    | 0.98 (0.73–1.31)    |
| Adjusted for propensity score§                    | 0.97 (0.74–1.28)    |

### Observational Study of Hydroxychloroquine in Hospitalized Patients with Covid-19. Geleris J., Sun Y., Platt J., et al. N Engl J Med 2020; 382:2411-2418

### CONVALESCENT PLASMA

# Fig. 5: Meta-analysis of mortality at 30 d in CONCOR-1 and other trials according to convalescent plasma selection strategy.

From: Convalescent plasma for hospitalized patients with COVID-19: an open-label, randomized controlled trial

|    | а                                             | High-titer CCP                                        |                   | Control     |        |                       |                                      |
|----|-----------------------------------------------|-------------------------------------------------------|-------------------|-------------|--------|-----------------------|--------------------------------------|
|    | Study                                         | Sample size                                           | Events            | Sample size | Events | RR (95% CI)           | Random effects model                 |
|    | Avendaño-Solà 2020                            | 38                                                    | 0                 | 43          | 4      | 0.13 (0.01, 2.26)     | ←────                                |
|    | Bennett-Guerrero 2020                         | 59                                                    | 14                | 15          | 4      | 0.89 (0.34, 2.31)     |                                      |
|    | Estcourt 2021                                 | 1,078                                                 | 401               | 904         | 347    | 0.97 (0.87, 1.09)     | 4                                    |
|    | Gharbharan 2020                               | 43                                                    | 6                 | 43          | 11     | 0.55 (0.22, 1.34)     | <b>← → →</b>                         |
|    | Horby 2021                                    | 5,795                                                 | 1,398             | 5,763       | 1,408  | 0.99 (0.93, 1.05)     | ÷                                    |
|    | Körper 2021                                   | 53                                                    | 7                 | 52          | 8      | 0.86 (0.34, 2.20)     |                                      |
|    | Li 2020                                       | 52                                                    | 8                 | 51          | 12     | 0.65 (0.29, 1.47)     | ←                                    |
|    | Libster 2020                                  | 80                                                    | 2                 | 80          | 4      | 0.50 (0.09, 2.65)     | <                                    |
|    | O'Donnell 2021                                | 150                                                   | 19                | 73          | 18     | 0.51 (0.29, 0.92)     | <b>← → → </b>                        |
|    | Ray 2020                                      | 40                                                    | 10                | 40          | 14     | 0.71 (0.36, 1.41)     |                                      |
|    | Simonovich 2020                               | 228                                                   | 25                | 105         | 12     | 0.96 (0.50, 1.83)     |                                      |
|    | CONCOR-1 blood supplier 1                     | 343                                                   | 75                | 173         | 40     | 0.95 (0.67, 1.33)     |                                      |
|    |                                               |                                                       |                   |             |        |                       |                                      |
|    | Total (95% CI)                                | 7,959                                                 |                   | 7,342       |        | 0.97 (0.92, 1.02)     | 4                                    |
|    | Heterogeneity: $Tau^2 = 0$ ; $Chi^2 = 10.8$   | 30, df = 11 ( <i>P</i> = 0.46); <i>l</i> <sup>2</sup> | <sup>2</sup> = 0% |             |        |                       | 0.3 0.5 1 2 5                        |
|    |                                               |                                                       |                   |             |        | 1                     | Favors high-titer CCP Favors control |
| on |                                               |                                                       |                   |             |        |                       | RR (95% CI)                          |
|    | b                                             |                                                       |                   |             |        |                       |                                      |
|    |                                               | Unselected CCP                                        |                   | Control     |        |                       | Random effects model                 |
|    | Study                                         | Sample size                                           | Events            | Sample size | Events | RR (95% CI)           |                                      |
|    | Agarwal 2020                                  | 235                                                   | 34                | 229         | 31     | 1.07 (0.68, 1.68)     |                                      |
|    | AlQahtani 2020                                | 20                                                    | 1                 | 20          | 2      | 0.50 (0.05, 5.08)     |                                      |
|    | Bajpai 2020                                   | 14                                                    | 3                 | 15          | 1      | 3.21 (0.38, 27.40)    |                                      |
|    | Hamdy Salman 2020                             | 15                                                    | 0                 | 15          | 0      | 0.2.7 (0.000) 2.7.70) |                                      |
|    | CONCOR-1 blood supplier 2/3/4                 | 271                                                   | 66                | 134         | 23     | 1.42 (0.93, 2.17)     |                                      |
|    |                                               | 271                                                   | 00                | 104         | 20     | 1.42 (0.00, 2.17)     |                                      |
|    | Total (95% CI)                                | 555                                                   |                   | 413         |        | 1.25 (0.92; 1.69)     |                                      |
|    | Heterogeneity: $Tau^2 = 0$ ; $Chi^2 = 2.15$ , |                                                       | 0%                |             |        |                       | 0.3 0.5 1 2 5                        |
|    |                                               |                                                       |                   |             |        | Fay                   | vors unselected CCP Favors control   |
|    |                                               |                                                       |                   |             |        |                       | RR (95% CI)                          |
| 1  |                                               |                                                       |                   |             |        |                       |                                      |

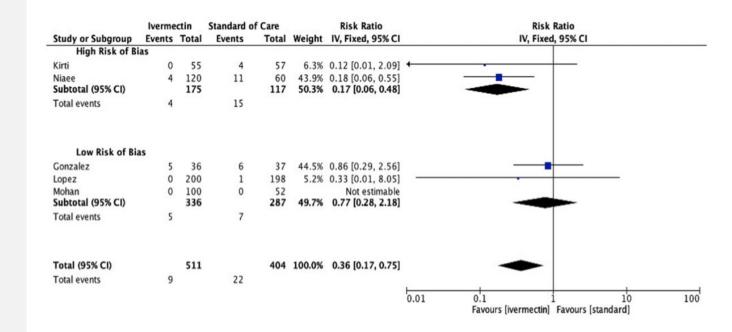
- Trials using high titer plasma – a

- Trials using low, medium and high titer plasma b
- Bottom line
- does not work in the general hospitalized
- May have utility in seronegative patients treated within Three days of illness onset with high titer plasma only
- CP does not have a place in prevention of hospitalization
- Does not have a place in prevention of acquisition

Bégin P, Callum J, Jamula E, Cook R, Heddle NM, Tinmouth A, Zeller MP, Beaudoin-Bussières G, Amorim L, Bazin R, Loftsgard KC, Carl R, Chassé M, Cushing MM, Daneman N, Devine DV, Dumaresq J, Fergusson DA, Gabe C, Glesby MJ, Li N, Liu Y, McGeer A, Robitaille N, Sachais BS, Scales DC, Schwartz L, Shehata N, Turgeon AF, Wood H, Zarychanski R, Finzi A; CONCOR-1 Study Group, Arnold DM. Convalescent plasma for hospitalized patients with COVID-19: an open-label, randomized controlled trial. Nat Med. 2021 Sep 9. doi: 10.1038/s41591-021-01488-2. Epub ahead of print. PMID: 34504336.

a, Meta-analysis of trials that used high-titer plasma. b, Meta-analysis of trials that used a mix of low-, medium- and high-titer plasma. df, degrees of freedom.

# Ivermectin – magic bullet or the new hydroxychloroquine


Ivermectin is an antiparasitic agent that interferes with nerve and muscle function of helminths through binding glutamate-gated chloride channels (32). Based on in vitro experiments, some have postulated that ivermectin may have a direct antiviral effect against SARS-CoV-2. However, in humans the concentrations needed for in vitro inhibition are unlikely to be achieved by the doses proposed for COVID-19 (33)(34)(35). Ivermectin had no impact on SARS-CoV-2 viral RNA in the Syrian golden hamster model of SARS-CoV-2 infection (36). The proposed mechanism remains unclear: multiple targets have been proposed based upon either analogy to other viruses with very different life cycles, or, like several hundred other candidates, simulations indicating molecular docking with multiple viral targets including spike, RdRp and 3CLpro (37)(38)(39)(40)(41). No direct evidence for any mechanism of antiviral action against SARS-CoV-2 currently exists.


- Professional medical associations of repute and governmental agencies recommend the use of lvermectin only in a clinical trial.

- The studies done have been small, subject to bias, lack of data transparency, and outright fraud leading to withdrawal of the largest Study by El Nazzar et al.
- The effect on mortality described is inconsistent with any anti-viral strategy for an acute infectious viral condition and with other

Anti-viral strategies used in severe hospitalized patients for influenza and COVID 19 for example, or CMV in immune compromised Persons.

- The doses required to achieve neutralization of virus based on in-vitro studies would have to be about 100 times higher than those Used for anti-parasitic applications.
- The issue is political and not settled but I doubt the studies are meaningful and I doubt that any intervention can work so well as Claimed.





**Days since Randomization** 

No. at Risk Usual care

Dexamethasone 1279

No. at Risk

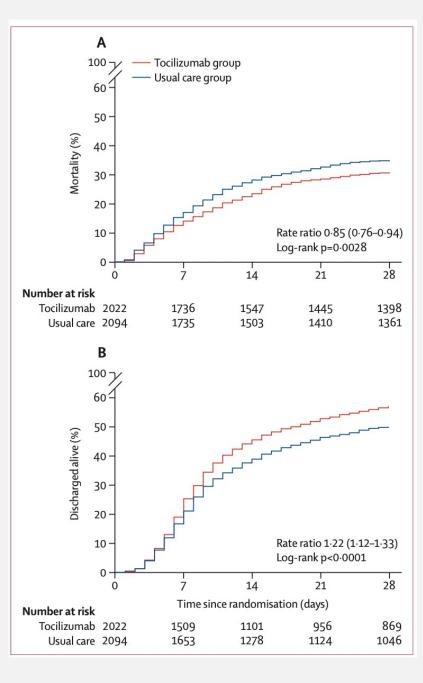
Dexamethasone

Usual care

Days since Randomization

Recovery Trial Group. Dexamethasone in Hospitalized patients with COVID -19 - Preliminary Report. NEJM, Jul 17, 2020.

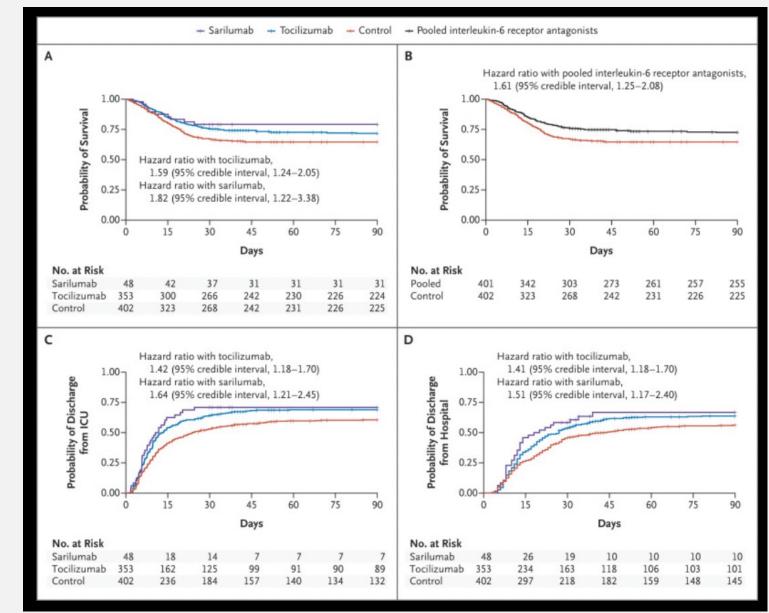
### **RECOVERY TRIAL-TOCILIZUMAB**


| - 4116 | rando | mized |
|--------|-------|-------|
|--------|-------|-------|

- 2022 toci
- 2094 SOC
- Open label
- Over 18
- CRP > 7.5
- SaO2 < 92% RA
- Both ICU and non-ICU patients

|                                                          | Treatment allocation          | on                           | RR (95% CI)      | p value |  |
|----------------------------------------------------------|-------------------------------|------------------------------|------------------|---------|--|
|                                                          | Tocilizumab group<br>(n=2022) | Usual care group<br>(n=2094) |                  |         |  |
| Primary outcome                                          |                               |                              |                  |         |  |
| 28-day mortality                                         | 621 (31%)                     | 729 (35%)                    | 0.85 (0.76–0.94) | 0.0028  |  |
| Secondary outcomes                                       |                               |                              |                  |         |  |
| Median time to being<br>discharged, days                 | 19                            | >28                          |                  |         |  |
| Discharged from hospital within 28 days                  | 1150 (57%)                    | 1044 (50%)                   | 1.22 (1.12–1.33) | <0.0001 |  |
| Receipt of invasive mechanical ventilation or death*     | 619/1754 (35%)                | 754/1800 (42%)               | 0.84 (0.77–0.92) | <0.0001 |  |
| Invasive mechanical ventilation                          | 265/1754 (15%)                | 343/1800 (19%)               | 0.79 (0.69–0.92) | 0.0019  |  |
| Death                                                    | 490/1754 (28%)                | 580/1800 (32%)               | 0.87 (0.78–0.96) | 0.0055  |  |
| Subsidiary clinical outcomes                             |                               |                              |                  |         |  |
| Receipt of ventilation <sup>†</sup>                      | 290/935 (31%)                 | 323/933 (35%)                | 0.90 (0.79–1.02) | 0.10    |  |
| Non-invasive ventilation                                 | 281/935 (30%)                 | 309/933 (33%)                | 0.91 (0.79–1.04) | 0.15    |  |
| Invasive mechanical ventilation                          | 67/935 (7%)                   | 86/933 (9%)                  | 0.78 (0.57–1.06) | 0.11    |  |
| Successful cessation of invasive mechanical ventilation‡ | 95/268 (35%)                  | 98/294 (33%)                 | 1.08 (0.81–1.43) | 0.60    |  |
| Use of haemodialysis or<br>haemofiltration§              | 120/1994 (6%)                 | 172/2065 (8%)                | 0.72 (0.58–0.90) | 0.0046  |  |

Data are n (%), n/N (%), or median (IQR) unless stated otherwise. RR=rate ratio for the outcomes of 28-day mortality, hospital discharge, and successful cessation of invasive mechanical ventilation, and risk ratio for other outcomes. \*Analyses include only those on no ventilator support or non-invasive ventilation at second randomisation. †Analyses include only those on no ventilator support at second randomisation. ‡Analyses restricted to those on invasive mechanical ventilation at second randomisation. \$Analyses exclude those on haemodialysis or haemofiltration at second randomisation.


RECOVERY Collaborative Group. Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. Lancet. 2021 May 1;397(10285):1637-1645. doi: 10.1016/S0140-6736(21)00676-0. PMID: 33933206; PMCID: PMC8084355.

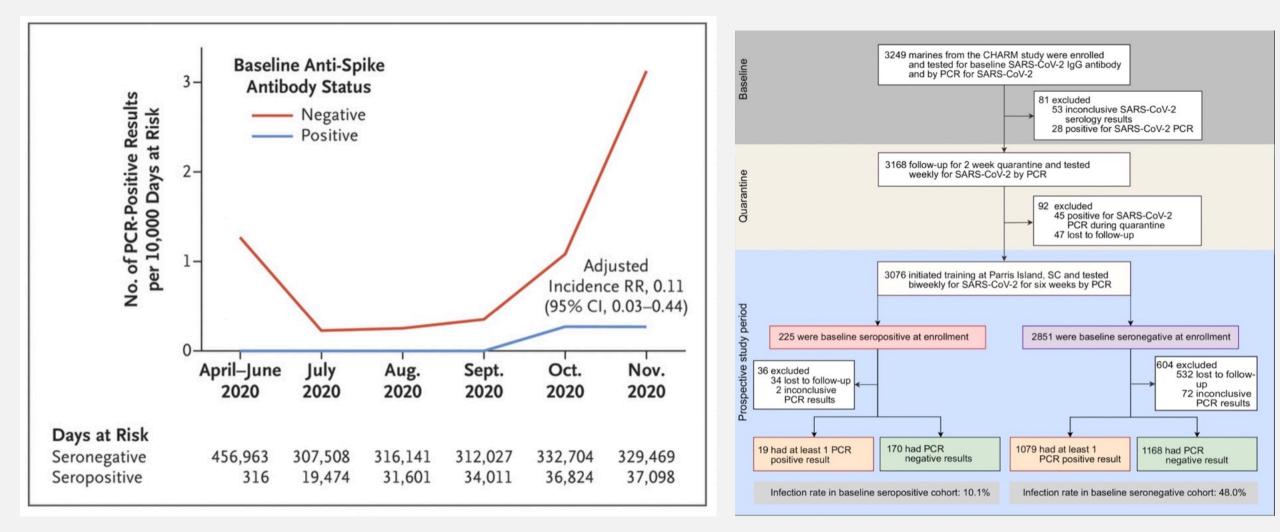


# **REMAP-CAP STUDY: IL-6R inhibitors**

Critically ill patients, 18 years of age or older, with either clinically suspected or microbiologically confirmed Covid-19 who were admitted to an intensive care unit (ICU) and receiving respiratory or cardiovascular organ support were classified as having a severe disease state and were eligible for enrollment in the Covid-19 Immune Modulation Therapy domain. Respiratory organ support was defined as invasive or noninvasive mechanical ventilation, including through high-flow nasal cannula if the flow rate was more than 30 liters per minute and the fraction of inspired oxygen was more than 0.4.

- Toci 353, Sari 48, 402 control
- 90-95% patients received glucocorticoids
- Remdesivir use balanced
- Other clinical features balanced
- **Result:** improved organ support free days and mortality
- ADR not significantly different




REMAP-CAP Investigators, Gordon AC, Mouncey PR, Al-Beidh F, Rowan KM, Nichol AD, Arabi YM, Annane D, Beane A, van Bentum-Puijk W, Berry LR, Bhimani Z, Bonten MJM, Bradbury CA, Brunkhorst FM, Buzgau A, Cheng AC, Detry MA, Duffy EJ, Estcourt LJ, Fitzgerald M, Goossens H, Haniffa R, Higgins AM, Hills TE, Horvat CM, Lamontagne F, Lawler PR, Leavis HL, Linstrum KM, Litton E, Lorenzi E, Marshall JC, Mayr FB, McAuley DF, McGlothlin A, McGuinness SP, McVerry BJ, Montgomery SK, Morpeth SC, Murthy S, Orr K, Parke RL, Parker JC, Patanwala AE, Pettilä V, Rademaker E, Santos MS, Saunders CT, Seymour CW, Shankar-Hari M, Sligl WI, Turgeon AF, Turner AM, van de Veerdonk FL, Zarychanski R, Green C, Lewis RJ, Angus DC, McArthur CJ, Berry S, Webb SA, Derde LPG. Interleukin-6 Receptor Antagonists in Critically III Patients with Covid-19. N Engl J Med. 2021 Apr 22;384(16):1491-1502. doi: 10.1056/NEJMoa2100433. Epub 2021 Feb 25. PMID: 33631065; PMCID: PMC7953461.

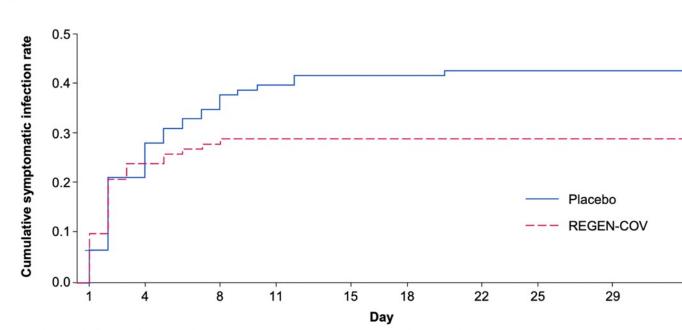
| Inclusion Criteria – 18 or older<br>Positive PCR<br>Hospitalized<br>CRP or other marker elevated<br>Bilateral infiltrates on XR<br>Excluded if IVIG or CP<br>Need for mechanical vent<br>Immunosuppressive treatment<br>LFT > 5 ULN<br>Randomized 1525 pts<br>Results<br>12% Reduction in mortality in OrdS 6<br>None in OrdS 4/5<br>Treating 8 pts in OrdS saves 1 life<br>Other conclusions |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                               |
| Baseline groups balanced                                                                                                                                                                                                                                                                                                                                                                      |
| ADR not significantly different                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                               |

BOTTOM LINE – in HHFNC patients Baricitinib reduces mortality with and Without concomitant steroid treatment

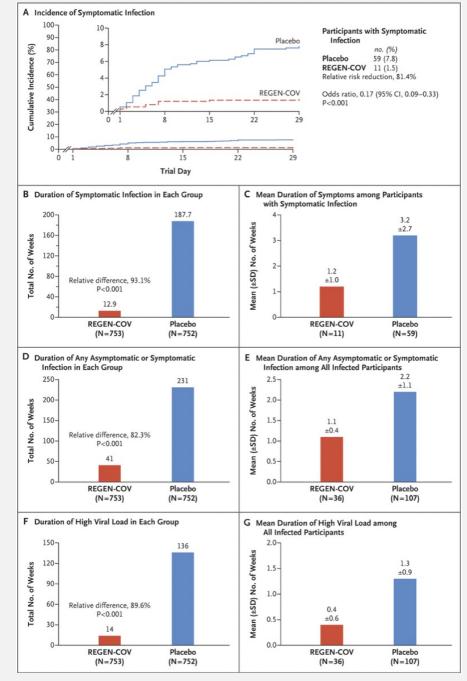
|                          | Baricitinib group | Placebo group | Hazard ratio<br>(95% CI)            | p value |
|--------------------------|-------------------|---------------|-------------------------------------|---------|
| NIAID-OS score at baseli | ne                |               |                                     | ~       |
| 4                        | 1/89 (1%)         | 4/97 (4%)     | • 0.24 (0.00-2.18)                  | 0.23    |
| 5                        | 29/490 (6%)       | 41/472 (9%)   | • 0.72 (0.45-1.16)                  | 0.11    |
| 6                        | 32/183 (17%)      | 55/187 (29%)  | 0·52 (0·33-0·80)                    | 0.0065  |
| Systemic corticosteroid  | use at baseline   |               |                                     |         |
| Yes                      | 57/612 (9%)       | 82/592 (14%)  |                                     | 0.017   |
| No                       | 5/150 (3%)        | 18/164 (11%)  |                                     | 0.011   |
| Remdesivir use at baseli | ne                |               |                                     |         |
| Yes                      | 12/140 (9%)       | 16/147 (11%)  | 0.81 (0.38-1.73)                    | 0.60    |
| No                       | 50/622 (8%)       | 84/609 (14%)  |                                     | 0.0014  |
| Geographical region      |                   |               |                                     |         |
| Europe                   | 1/73 (1%)         | 4/70 (6%)     | • 0.22 (0.00-2.46)                  | 0.18    |
| USA                      | 16/162 (10%)      | 24/158 (15%)  | • 0.61 (0.32–1.16)                  | 0.15    |
| Rest of world            | 45/529 (9%)       | 72/533 (14%)  |                                     | 0.010   |
| Sex                      |                   |               |                                     |         |
| Male                     | 38/490 (8%)       | 64/473 (14%)  | 0·56 (0·38–0·84)                    | 0.0041  |
| Female                   | 24/274 (9%)       | 36/288 (13%)  | • 0.60 (0.36-1.02)                  | 0.17    |
| Disease duration at base | line (days)       |               |                                     |         |
| <7                       | 7/137 (5%)        | 16/116 (14%)  | 0.33 (0.13-0.82)                    | 0.017   |
| ≥7                       | 55/625 (9%)       | 84/640 (13%)  | • 0.61 (0.44–0.86)                  | 0.019   |
| Age at baseline (years)  |                   |               |                                     |         |
| <65                      | 17/508 (3%)       | 41/518 (8%)   |                                     | 0.0018  |
| ≥65                      | 45/256 (18%)      | 59/243 (24%)  |                                     | 0.072   |
| Population 2*            | 5/96 (5%)         | 16/109 (15%)  | 0.31 (0.11-0.88)                    | 0.030   |
| Overall (population 1)   | 62/764 (8%)       | 100/761 (13%) | 0·57 (0·41-0·78)                    | 0.0018  |
|                          |                   |               | 0.0.5 $1.0$ $1.5$ $2.0$ $2.5$       |         |
|                          |                   |               | Favours baricitinib Favours placebo |         |

Marconi VC, Ramanan AV, de Bono S, Kartman CE, Krishnan V, Liao R, Piruzeli MLB, Goldman JD, Alatorre-Alexander J, de Cassia Pellegrini R, Estrada V, Som M, Cardoso A, Chakladar S, Crowe B, Reis P, Zhang X, Adams DH, Ely EW; COV-BARRIER Study Group. Efficacy and safety of baricitinib for the treatment of hospitalised adults with COVID-19 (COV-BARRIER): a randomised, double-blind, parallel-group, placebo-controlled phase 3 trial. Lancet Respir Med. 2021 Aug 31:S2213-2600(21)00331-3. doi: 10.1016/S2213-2600(21)00331-3. Epub ahead of print. Erratum in: Lancet Respir Med. 2021 Sep 8;: PMID: 34480861; PMCID: PMC8409066.




Lumley SF, et al. Oxford University Hospitals Staff Testing Group. Antibody Status and Incidence of SARS-CoV-2 Infection in Health Care Workers. N Engl J Med. 2021 Feb 11;384(6):533-540.

# Primary Endpoint: Proportion of Patients with ≥ 1 COVID-19 Related Hospitalization or All-Cause Death Through Day 29 (COV-2067)

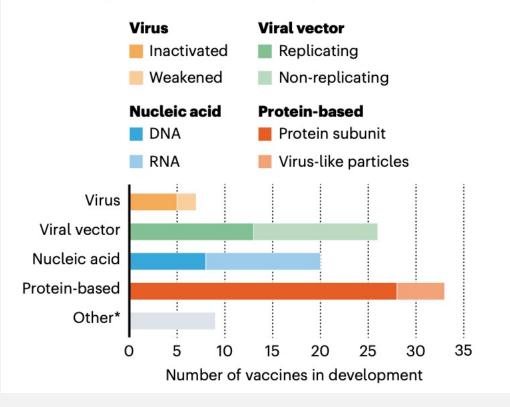

|                              | <b>REGEN-COV</b><br>600 mg of casirivimab and<br>600 mg of imdevimab<br>(intravenous)<br>(n=736) | <b>Placebo</b><br>(n=748) | 1,200 mg of casirivimab and<br>1,200 mg of imdevimab<br>(intravenous)<br>(n=1,335) | Placebo<br>(n=1,341) |
|------------------------------|--------------------------------------------------------------------------------------------------|---------------------------|------------------------------------------------------------------------------------|----------------------|
| # of patients<br>with events | 7 (1.0%)                                                                                         | 24 (3.2%)                 | 18 (1.3%)                                                                          | 62 (4.6%)            |
| <b>Risk reduction</b>        | 70% compared to p<br>( <i>P=0.0024</i> )                                                         | lacebo                    | 71% compared to p<br><i>(P&lt;0.0001)</i>                                          | lacebo               |

Results were consistent across subgroups of patients including nasopharyngeal viral load >10<sup>6</sup> copies/mL or serologic status at baseline.

https://www.regencov.com/hcp/clinical-information/primary-endpoint, accessed 9/20/21.



O'Brien MP, Forleo-Neto E, Sarkar N, et al. Covid-19 Phase 3 Prevention Trial Team. Subcutaneous REGEN-COV Antibody Combination in Early SARS-CoV-2 Infection. medRxiv [Preprint]. 2021 Jun 14:2021.06.14.21258569.




O'Brien MP et al. Covid-19 Phase 3 Prevention Trial Team. Subcutaneous REGEN-COV Antibody Combination to Prevent Covid-19. N Engl J Med. 2021 Aug 4:NEJMoa2109682.

#### A. Time to First Symptom with an Onset within 14 Days of a Positive RT-qPCR at Baseline or **During the Efficacy Assessment Period\***

# **AN ARRAY OF VACCINES**

All vaccines aim to expose the body to an antigen that won't cause disease, but will provoke an immune response that can block or kill the virus if a person becomes infected. There are at least eight types being tried against the coronavirus, and they rely on different viruses or viral parts.



#### Weakened virus

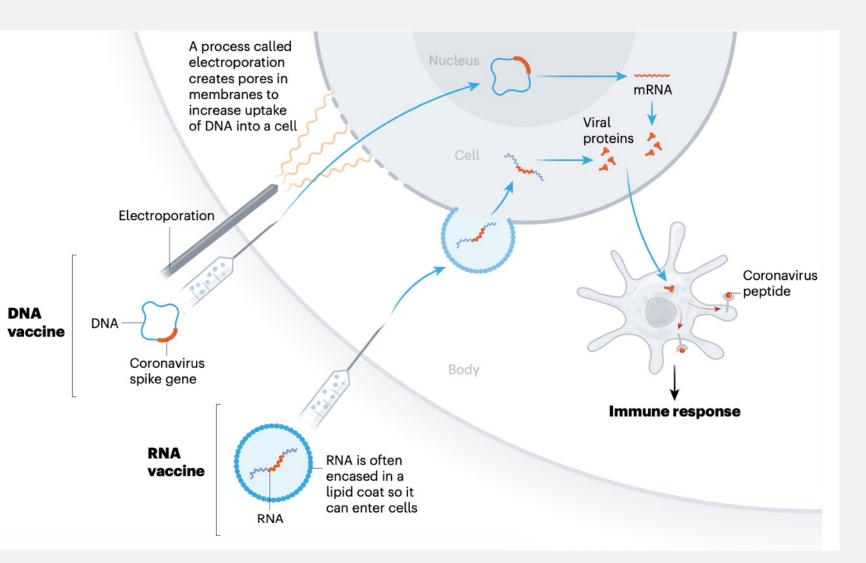
A virus is conventionally weakened for a vaccine by being passed through animal or human cells until it picks up mutations that make it less able to cause disease. Codagenix in Farmingdale, New York, is working with the Serum Institute of India, a vaccine manufacturer in Pune, to weaken SARS-CoV-2 by altering its genetic code so that viral proteins are produced less efficiently.

Vaccine

#### **Inactivated virus**

In these vaccines, the virus is rendered uninfectious using chemicals, such as formaldehyde, or heat. Making them, however, requires starting with large quantities of infectious virus.

Body


Virus replicates

Nature | Vol 580 | 30 April 2020 |

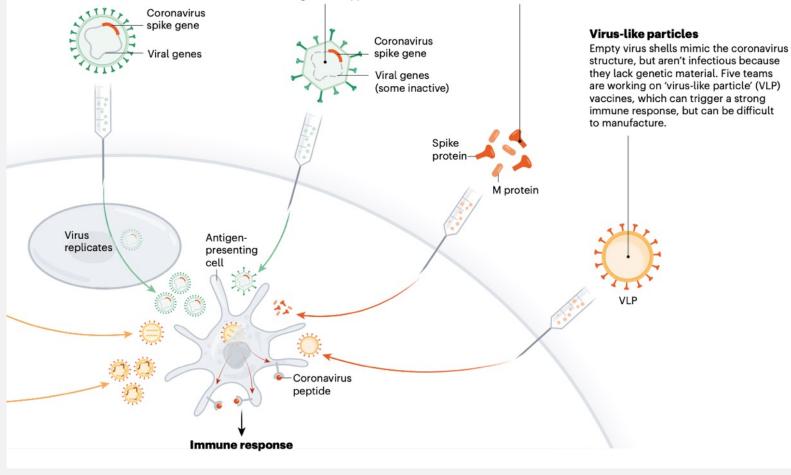
## **NUCLEIC-ACID VACCINES**

At least 20 teams are aiming to use genetic instructions (in the form of DNA or RNA) for a coronavirus protein that prompts an immune response. The nucleic acid is inserted into human cells, which then churn out copies of the virus protein; most of these vaccines encode the virus's spike protein.

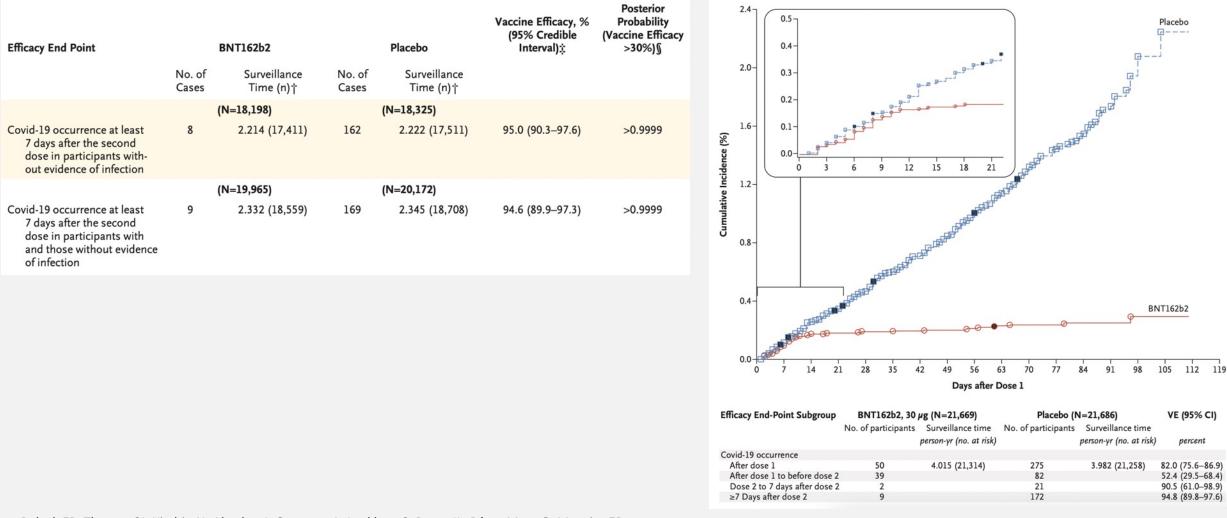
RNA- and DNA-based vaccines are safe and easy to develop: to produce them involves making genetic material only, not the virus. But they are unproven: no licensed vaccines use this technology.



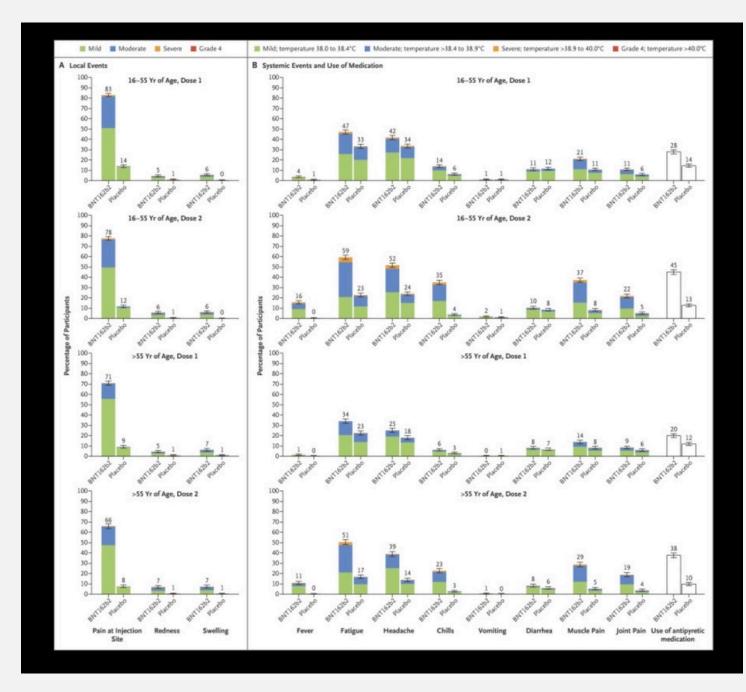
# Replicating viral vector (such as weakened measles)


The newly approved Ebola vaccine is an example of a viral-vector vaccine that replicates within cells. Such vaccines tend to be safe and provoke a strong immune response. Existing immunity to the vector could blunt the vaccine's effectiveness, however.

# Non-replicating viral vector (such as adenovirus)

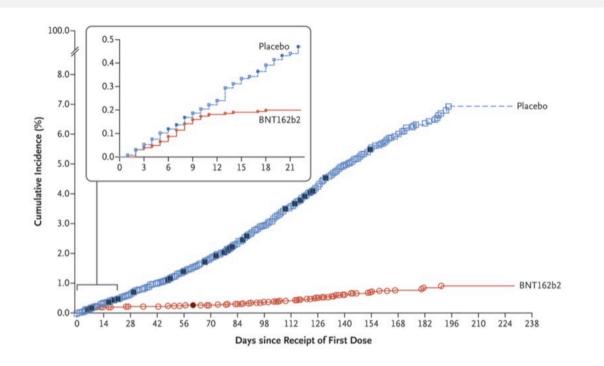

No licensed vaccines use this method, but they have a long history in gene therapy. Booster shots can be needed to induce long-lasting immunity. US-based drug giant Johnson & Johnson is working on this approach.

#### **Protein subunits**


Twenty-eight teams are working on vaccines with viral protein subunits — most of them are focusing on the virus's spike protein or a key part of it called the receptor binding domain. Similar vaccines against the SARS virus protected monkeys against infection but haven't been tested in people. To work, these vaccines might require adjuvants immune-stimulating molecules delivered alongside the vaccine — as well as multiple doses.



# The first Pfizer VACCINE trial




Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S, Perez JL, Pérez Marc G, Moreira ED, Zerbini C, Bailey R, Swanson KA, Roychoudhury S, Koury K, Li P, Kalina WV, Cooper D, Frenck RW Jr, Hammitt LL, Türeci Ö, Nell H, Schaefer A, Ünal S, Tresnan DB, Mather S, Dormitzer PR, Şahin U, Jansen KU, Gruber WC; C4591001 Clinical Trial Group. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N Engl J Med. 2020 Dec 31;383(27):2603-2615. doi: 10.1056/NEJMoa2034577. Epub 2020 Dec 10. PMID: 33301246; PMCID: PMC7745181.



Adverse Effects

### Pfizer BNT 162b2 vaccine efficacy up to 6 months of follow up



| Efficacy End Point                                                | BNT162b2<br>(N=23,040) |                      |                | Placebo<br>(N=23,037) |                      |                | Vaccine Efficacy     |
|-------------------------------------------------------------------|------------------------|----------------------|----------------|-----------------------|----------------------|----------------|----------------------|
|                                                                   | No. of<br>cases        | Surveillance<br>time | No. at<br>risk | No. of<br>cases       | Surveillance<br>time | No. at<br>risk |                      |
|                                                                   |                        | 1000 person-yr       |                |                       | 1000 person-yr       |                | % (95% CI)           |
| Overall: first occurrence of Covid-19 after receipt of first dose | 131                    | 8.412                | 22,505         | 1034                  | 8.124                | 22,434         | 87.8 (85.3 to 89.9)  |
| After receipt of first dose up to receipt of second dose          | 46                     | 1.339                | 22,505         | 110                   | 1.331                | 22,434         | 58.4 (40.8 to 71.2)  |
| <11 Days after receipt of first dose                              | 41                     | 0.677                | 22,505         | 50                    | 0.675                | 22,434         | 18.2 (-26.1 to 47.3) |
| ≥11 Days after receipt of first dose up to receipt of second dose | 5                      | 0.662                | 22,399         | 60                    | 0.656                | 22,369         | 91.7 (79.6 to 97.4)  |
| After receipt of second dose to <7 days after                     | 3                      | 0.424                | 22,163         | 35                    | 0.422                | 22,057         | 91.5 (72.9 to 98.3)  |
| ≥7 Days after receipt of second dose                              | 82                     | 6.649                | 22,132         | 889                   | 6.371                | 22,001         | 91.2 (88.9 to 93.0)  |
| ≥7 Days after receipt of second dose to <2 mo after               | 12                     | 2.923                | 22,132         | 312                   | 2.884                | 22,001         | 96.2 (93.3 to 98.1)  |
| ≥2 Mo after receipt of second dose to <4 mo after                 | 46                     | 2.696                | 20,814         | 449                   | 2.593                | 20,344         | 90.1 (86.6 to 92.9)  |
| ≥4 Mo after receipt of second dose                                | 24                     | 1.030                | 12,670         | 128                   | 0.895                | 11,802         | 83.7 (74.7 to 89.9)  |

| Efficacy End Point                                                                                                                                      |                 | BNT162b2              |                |                 | Placebo               |                | Vaccine Efficacy<br>(95% CI); |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------------|----------------|-----------------|-----------------------|----------------|-------------------------------|
|                                                                                                                                                         | No. of<br>Cases | Surveillance<br>Time† | No. at<br>Risk | No. of<br>Cases | Surveillance<br>Time† | No. at<br>Risk |                               |
|                                                                                                                                                         |                 | 1000 person-yr        |                |                 | 1000 person-yr        |                | percent                       |
|                                                                                                                                                         |                 | (N=20,998)            |                |                 | (N=21,096)            |                |                               |
| First occurrence of Covid-19<br>from 7 days after receipt<br>of the second dose among<br>participants without evidence<br>of previous infection         | 77              | 6.247                 | 20,712         | 850             | 6.003                 | 20,713         | 91.3<br>(89.0–93.2)           |
|                                                                                                                                                         |                 | (N=22,166)            |                |                 | (N=22,320)            |                |                               |
| First occurrence of Covid-19<br>from 7 days after receipt<br>of the second dose among<br>participants with or without<br>evidence of previous infection | 81              | 6.509                 | 21,642         | 873             | 6.274                 | 21,689         | 91.1<br>(88.8–93.0)           |

In an ongoing, placebo-controlled, observer-blinded, multinational, pivotal efficacy trial, we randomly assigned 44,165 participants 16 years of age or older and 2264 participants 12 to 15 years of age to receive two 30-µg doses, at 21 days apart, of BNT162b2 or placebo. The trial end points were vaccine efficacy against laboratory-confirmed Covid-19 and safety, which were both evaluated through 6 months after vaccination.

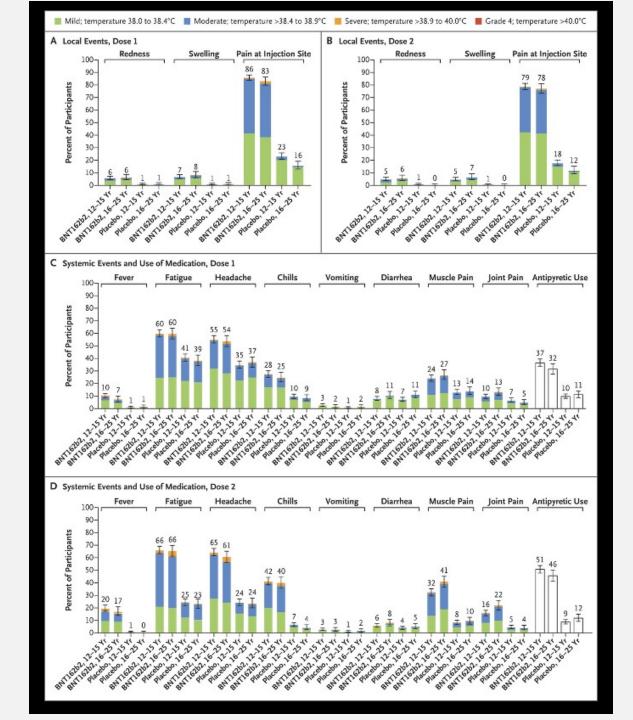
### Safety: No new safety signals

Thomas SJ, Moreira ED Jr, Kitchin N, Absalon J, Gurtman A, Lockhart S, Perez JL, Pérez Marc G, Polack FP, Zerbini C, Bailey R, Swanson KA, Xu X, Roychoudhury S, Koury K, Bouguermouh S, Kalina WV, Cooper D, Frenck RW Jr, Hammitt LL, Türeci Ö, Nell H, Schaefer A, Ünal S, Yang Q, Liberator P, Tresnan DB, Mather S, Dormitzer PR, Şahin U, Gruber WC, Jansen KU; C4591001 Clinical Trial Group. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine through 6 Months. N Engl J Med. 2021 Sep 15. doi: 10.1056/NEJMoa2110345. Epub ahead of print. PMID: 34525277.

### Test neg design COVID like illness pts Tested for SARS-COV2 Vaccination status compared between the groups

## VACCINE EFFICACY: Ambulatory and Inpatient Settings

| Subgroup                                                           | No. of<br>Patients | Positive for<br>SARS-CoV-2 | Vaccine Effectiveness (95% CI)          |
|--------------------------------------------------------------------|--------------------|----------------------------|-----------------------------------------|
|                                                                    |                    | no. (%)                    | %                                       |
| Effectiveness against hospitalization                              |                    |                            |                                         |
| BNT162b2 vaccine                                                   |                    |                            |                                         |
| Unvaccinated (referent)                                            | 20,406             | 3695 (18.1)                |                                         |
| Partially vaccinated                                               |                    |                            |                                         |
| Dose 1                                                             | 1,444              | 140 (9.7)                  | <b>33 (18–</b>                          |
| Dose 2                                                             | 1,348              | 57 (4.2)                   | <b>→→</b> 73 (63–3                      |
| Fully vaccinated — 2 doses                                         | 8,500              | 163 (1.9)                  | l●I 87 (85–9                            |
| mRNA-1273 vaccine                                                  |                    |                            |                                         |
| Unvaccinated (referent)                                            | 20,406             | 3695 (18.1)                |                                         |
| Partially vaccinated                                               |                    |                            |                                         |
| Dose 1                                                             | 1,639              | 91 (5.6)                   | <b>⊢●</b> 68 (59–2                      |
| Dose 2                                                             | 1,134              | 50 (4.4)                   | <b>⊢</b> ● 74 (64–3                     |
| Fully vaccinated — 2 doses                                         | 6,374              | 95 (1.5)                   | Hei 91 (89-5                            |
| Ad26.COV2.S vaccine                                                |                    |                            |                                         |
| Unvaccinated (referent)                                            | 10,761             | 2006 (18.6)                |                                         |
| Fully vaccinated — 1 dose                                          | 707                | 30 (4.2)                   | <b>68 (50–</b>                          |
| Effectiveness against ICU admission                                |                    | . ,                        |                                         |
| BNT162b2 vaccine or mRNA-1273 vaccine                              |                    |                            |                                         |
| Unvaccinated (referent)                                            | 4,024              | 692 (17.2)                 |                                         |
| Partially vaccinated                                               |                    |                            |                                         |
| Dose 1                                                             | 512                | 39 (7.6)                   | <b>56 (35</b> –2                        |
| Dose 2                                                             | 388                | 15 (3.9)                   | F 75 (58−3                              |
| Fully vaccinated — 2 doses                                         | 2,359              | 38 (1.6)                   |                                         |
| Effectiveness against emergency department<br>or urgent care visit |                    | ()                         |                                         |
| BNT162b2 vaccine                                                   |                    |                            |                                         |
| Unvaccinated (referent)                                            | 11,812             | 2847 (24.1)                |                                         |
| Partially vaccinated                                               |                    |                            |                                         |
| Dose 1                                                             | 912                | 88 (9.6)                   | <b>⊢</b> ● 58 (46–0                     |
| Dose 2                                                             | 711                | 31 (4.4)                   | ₩₩₩ 82 (74-2                            |
| Fully vaccinated — 2 doses                                         | 3,589              | 105 (2.9)                  | Hei 89 (85-5                            |
| mRNA-1273 vaccine                                                  |                    |                            | • • • • • • • • • • • • • • • • • • • • |
| Unvaccinated (referent)                                            | 11,812             | 2847 (24.1)                |                                         |
| Partially vaccinated                                               |                    |                            |                                         |
| Dose 1                                                             | 1,008              | 67 (6.6)                   | <b>→</b> 73 (64–2                       |
| Dose 2                                                             | 558                | 35 (6.3)                   | <b>→</b> 72 (59–5                       |
| Fully vaccinated — 2 doses                                         | 2,476              | 49 (2.0)                   | <b>I</b> ●I 92 (89–9                    |
| Ad26.COV2.S vaccine                                                |                    | ()                         |                                         |
| Unvaccinated (referent)                                            | 8,461              | 2200 (26.0)                |                                         |
| Fully vaccinated — 1 dose                                          | 456                | 29 (6.4)                   | 73 (59–5                                |
|                                                                    |                    | ()                         | 0.0 25.0 50.0 75.0 100.0                |


Thompson MG, Stenehjem E, Grannis S, Ball SW, at al. Effectiveness of Covid-19 Vaccines in Ambulatory and Inpatient Care Settings. N Engl J Med. 2021 Sep 8. doi: 10.1056/NEJMoa2110362. Epub ahead of print. PMID: 34496194.

| Subgroup                                                  | No. of<br>Patients | Positive for<br>SARS-CoV-2 | Vaccine Effectiveness (95% CI)         |
|-----------------------------------------------------------|--------------------|----------------------------|----------------------------------------|
|                                                           |                    | no. (%)                    | %                                      |
| Effectiveness against hospitalization                     |                    |                            |                                        |
| ≥50 yr of age                                             |                    |                            |                                        |
| Unvaccinated (referent)                                   | 20,406             | 3695 (18.1)                |                                        |
| Partially vaccinated                                      |                    |                            |                                        |
| Dose 1                                                    | 3,083              | 231 (7.5)                  | <b>→→</b> 54 (47–61)                   |
| Dose 2                                                    | 2,482              | 107 (4.3)                  | Feed 73 (66-79)                        |
| Fully vaccinated — 2 doses                                | 14,874             | 258 (1.7)                  | ▶ 89 (87–91)                           |
| ≥85 yr of age                                             |                    |                            |                                        |
| Unvaccinated (referent)                                   | 2,960              | 447 (15.1)                 |                                        |
| Partially vaccinated                                      |                    |                            |                                        |
| Dose 1                                                    | 549                | 41 (7.5)                   | ► 38 (11–57)                           |
| Dose 2                                                    | 448                | 27 (6.0)                   | ► 56 (32-72)                           |
| Fully vaccinated — 2 doses                                | 3,306              | 68 (2.1)                   | ▶ 83 (77-87)                           |
| ≥50 yr of age with ≥1 chronic respiratory<br>condition    |                    |                            |                                        |
| Unvaccinated (referent)                                   | 13,018             | 2359 (18.1)                |                                        |
| Partially vaccinated                                      |                    |                            |                                        |
| Dose 1                                                    | 2,033              | 140 (6.9)                  | <b>→→</b> 56 (47–64)                   |
| Dose 2                                                    | 1,634              | 62 (3.8)                   | <b>→→</b> 76 (68–82)                   |
| Fully vaccinated — 2 doses                                | 10,257             | 152 (1.5)                  | ₩ 90 (88–92)                           |
| ≥50 yr of age with ≥1 chronic nonrespiratory<br>condition |                    |                            |                                        |
| Unvaccinated (referent)                                   | 18,089             | 3043 (16.8)                |                                        |
| Partially vaccinated                                      |                    |                            |                                        |
| Dose 1                                                    | 2835               | 201 (7.1)                  | <b>→→</b> 54 (45–61)                   |
| Dose 2                                                    | 2302               | 97 (4.2)                   | <b>→</b> 71 (62–77)                    |
| Fully vaccinated — 2 doses                                | 13,999             | 240 (1.7)                  | <b>₩</b> 88 (86–90)                    |
| Black and ≥50 yr of age                                   |                    | . ,                        | , , , , , , , , , , , , , , , , , , ,  |
| Unvaccinated (referent)                                   | 2,393              | 436 (18.2)                 |                                        |
| Partially vaccinated                                      |                    | ( , ,                      |                                        |
| Dose 1                                                    | 269                | 21 (7.8)                   | • 47 (10–69)                           |
| Dose 2                                                    | 194                | 7 (3.6)                    | ► 75 (36–90)                           |
| Fully vaccinated — 2 doses                                | 961                | 20 (2.1)                   | ▶ 86 (75-92)                           |
| Hispanic and $\geq$ 50 yr of age                          |                    | 20 (2.2)                   |                                        |
| Unvaccinated (referent)                                   | 2,376              | 656 (27.6)                 |                                        |
| Partially vaccinated                                      | 2,570              | 000 (27.0)                 |                                        |
| Dose 1                                                    | 307                | 36 (11.7)                  | <b>56 (35–70)</b>                      |
| Dose 2                                                    | 264                | 16 (6.1)                   | ► ► ► ► ► ► ► ► ► ► ► ► ► ► ► ► ► ► ►  |
| Fully vaccinated — 2 doses                                | 1,540              | 35 (2.3)                   | → 90 (85–93)                           |
| Effectiveness against ICU admission                       | 1,540              | 55 (2.5)                   | 101 50 (05-55)                         |
| ≥50 yr of age                                             |                    |                            |                                        |
| Unvaccinated (referent)                                   | 4,024              | 692 (17.2)                 |                                        |
| Partially vaccinated                                      | 4,024              | 052 (17.2)                 |                                        |
| Dose 1                                                    | 512                | 20 (7.6)                   | <b>56 (35–70)</b>                      |
| Dose 1<br>Dose 2                                          | 388                | 39 (7.6)                   | . ,                                    |
|                                                           | 2.359              | 15 (3.9)                   | ► T5 (58-86)<br>► 90 (86-93)           |
| Fully vaccinated — 2 doses                                | 2,339              | 38 (1.6)                   | 90 (86−93)<br>0.0 25.0 50.0 75.0 100.0 |

# BNT 162b2 vaccine efficacy in adolescents

| Efficacy End Point†                                                                                                          | BNT162b2                                        |                                     | Placebo                                         |                                     | % Vaccine Efficacy<br>(95% CI)‡ |
|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------|-------------------------------------------------|-------------------------------------|---------------------------------|
|                                                                                                                              | No. of Participants<br>with Event/Total<br>No.§ | Surveillance Time<br>(No. at Risk)¶ | No. of Participants<br>with Event/Total<br>No.§ | Surveillance Time<br>(No. at Risk)¶ |                                 |
| Covid-19 occurrence at least<br>7 days after dose 2 in par-<br>ticipants without evidence of<br>previous infection           | 0/1005                                          | 0.154 (1001)                        | 16/978                                          | 0.147 (972)                         | 100 (75.3–100)                  |
| Covid-19 occurrence at least<br>7 days after dose 2 in par-<br>ticipants with or without evi-<br>dence of previous infection | 0/1119                                          | 0.170 (1109)                        | 18/1110                                         | 0.163 (1094)                        | 100 (78.1–100)                  |

Frenck RW Jr, Klein NP, Kitchin N, Gurtman A, Absalon J, Lockhart S, Perez JL, Walter EB, Senders S, Bailey R, Swanson KA, Ma H, Xu X, Koury K, Kalina WV, Cooper D, Jennings T, Brandon DM, Thomas SJ, Türeci Ö, Tresnan DB, Mather S, Dormitzer PR, Şahin U, Jansen KU, Gruber WC; C4591001 Clinical Trial Group. Safety, Immunogenicity, and Efficacy of the BNT162b2 Covid-19 Vaccine in Adolescents. N Engl J Med. 2021 Jul 15;385(3):239-250. doi: 10.1056/NEJMoa2107456. Epub 2021 May 27. PMID: 34043894; PMCID: PMC8174030.



# Effectiveness of Covid-19 Vaccines against the B.1.617.2 (Delta) Variant

Lopez Bernal J et al. DOI: 10.1056/NEJMoa2108891

#### CLINICAL PROBLEM

The B.1.617.2 (delta) variant of SARS-CoV-2 became the dominant variant in India as of mid-April 2021, amid a Covid-19 surge there, and has spread rapidly around the world. The effectiveness of available vaccines in preventing symptomatic disease with this variant is unknown.

#### CLINICAL TRIAL

**Design:** A test-negative case–control study was conducted to estimate the effectiveness of the BNT162b2 (Pfizer– BioNTech) and ChAdOx1 nCoV-19 (AstraZeneca) vaccines against symptomatic disease from the delta variant of SARS-CoV-2.

**Methods:** Researchers examined data from symptomatic persons 16 years of age or older who underwent Covid-19 testing in England between October 2020 and May 2021. To estimate vaccine effectiveness, they assessed vaccination status in 4272 persons who tested positive for the delta variant and in 14,837 who tested positive for the B.1.1.7 (alpha) variant (the predominant strain in England at the time), as compared with test-negative controls.

#### RESULTS


Effectiveness: After one dose of either vaccine, the estimated effectiveness was lower against delta than against alpha. After two doses, however, vaccine effectiveness was high, with only modest differences between the variants. The effectiveness of two doses against delta was lower with ChAdOx1 nCoV-19 than with BNT162b2.

#### LIMITATIONS AND REMAINING QUESTIONS

 How well do Covid-19 vaccines protect against severe disease, including hospitalization and death, from infection with the delta variant?

#### Links: Full Article | NEJM Quick Take | Editorial

#### Vaccine Effectiveness against the Delta and Alpha Variants



Either Vaccine (BNT162b2 or ChAdOx1 nCoV-19)

Vaccine Effectiveness against the Delta Variant after Dose 2



#### CONCLUSIONS

Two doses of the BNT162b2 or ChAdOx1 nCoV-19 vaccine were highly effective against the delta variant of SARS-CoV-2, although slightly less so than against the alpha variant.

## Comparison of Adverse events after Vaccination (blue) v SARS-COV2 infection ()

Acute Kidney Injury Appendicitis Arrhythmia **Deep-Vein Thrombosis** 30.0-30.0 30.0-30.0-10.0-10.0-10.0-10.0-Ŧ - 880,000 vaccinated persons and similar 3.0-3.0-3.0-3.0number of controls 1.0-1.0 1.0 1.0-- 173, 000 SARS-COV2 infection persons and similar number of controls 0.3-0.3 0.3 0.3 Myocardial Infarction Herpes Zoster Infection Intracranial Hemorrhage Lymphadenopathy 30.0-30.0-30.0-30.0-Risk Ratio (log scale) 10.0-10.0-10.0-10.0-3.0-3.0-3.0-3.0-∎ 1.0. 1.0 1.0. 1.0-0.3 0.3 0.3 0.3 Myocarditis Pericarditis **Pulmonary Embolism** 30.0-30.07 30.0-10.0-10.0-10.0-3.0-3.0-3.0-1.0-1.0 1.0. 0.3-0.3-0.3

Barda N, Dagan N, Ben-Shlomo Y, Kepten E, Waxman J, Ohana R, Hernán MA, Lipsitch M, Kohane I, Netzer D, Reis BY, Balicer RD. Safety of the BNT162b2 mRNA Covid-19 Vaccine in a Nationwide Setting. N Engl J Med. 2021 Sep 16;385(12):1078-1090. doi: 10.1056/NEJMoa2110475. Epub 2021 Aug 25. PMID: 34432976; PMCID: PMC8427535.

### Vaccine Related Adverse Events versus Control persons in Israel – Nationwide setting

| Event                    | Adverse-Event Cohort<br>in Each Group | Vaccinated<br>Group | Control<br>Group | Risk Ratio<br>(95% CI) | Risk Difference<br>(95% CI)      |
|--------------------------|---------------------------------------|---------------------|------------------|------------------------|----------------------------------|
|                          | no. of persons                        | no. of              | events           |                        | no. of events/100,000<br>persons |
| Acute kidney injury      | 912,019                               | 20                  | 45               | 0.44 (0.23 to 0.73)    | -4.6 (-7.8 to -1.8)              |
| Anemia                   | 709,267                               | 298                 | 378              | 0.79 (0.67 to 0.93)    | -18.7 (-32.1 to -6.1)            |
| Appendicitis             | 900,289                               | 95                  | 66               | 1.40 (1.02 to 2.01)    | 5.0 (0.3 to 9.9)                 |
| Arrhythmia               | 856,152                               | 254                 | 284              | 0.89 (0.74 to 1.04)    | -6.1 (-14.7 to 1.8)              |
| Arthritis or arthropathy | 731,340                               | 64                  | 70               | 0.95 (0.65 to 1.34)    | -0.8 (-6.3 to 4.2)               |
| Bell's palsy             | 923,692                               | 81                  | 59               | 1.32 (0.92 to 1.86)    | 3.5 (-1.1 to 7.8)                |
| Cerebrovascular accident | 917,598                               | 45                  | 55               | 0.84 (0.54 to 1.27)    | -1.6 (-5.3 to 2.0)               |
| Deep-vein thrombosis     | 925,380                               | 39                  | 47               | 0.87 (0.55 to 1.40)    | -1.1 (-4.5 to 2.7)               |
| Herpes simplex infection | 876,328                               | 219                 | 205              | 1.13 (0.95 to 1.38)    | 4.8 (-1.9 to 12.4)               |
| Herpes zoster infection  | 888,647                               | 283                 | 204              | 1.43 (1.20 to 1.73)    | 15.8 (8.2 to 24.2)               |
| Intracranial hemorrhage  | 933,130                               | 13                  | 30               | 0.48 (0.20 to 0.89)    | -2.9 (-5.6 to -0.5)              |
| Lymphadenopathy          | 823,006                               | 660                 | 279              | 2.43 (2.05 to 2.78)    | 78.4 (64.1 to 89.3)              |
| Lymphopenia              | 938,939                               | 2                   | 7                | 0.26 (0.00 to 1.03)    | -0.9 (-2.0 to <0.1)              |
| Myocardial infarction    | 892,785                               | 59                  | 60               | 1.07 (0.74 to 1.60)    | 0.8 (-3.3 to 5.2)                |
| Myocarditis              | 938,812                               | 21                  | 6                | 3.24 (1.55 to 12.44)   | 2.7 (1.0 to 4.6)                 |
| Neutropenia              | 919,291                               | 20                  | 22               | 0.87 (0.46 to 1.66)    | -0.5 (-2.8 to 1.8)               |
| Other thrombosis†        | 932,469                               | 12                  | 22               | 0.46 (0.19 to 0.91)    | -2.2 (-4.6 to -0.3)              |
| Paresthesia              | 827,478                               | 552                 | 496              | 1.12 (0.98 to 1.24)    | 10.8 (-1.8 to 21.4)              |
| Pericarditis             | 936,197                               | 27                  | 18               | 1.27 (0.68 to 2.31)    | 1.0 (-1.6 to 3.4)                |
| Pulmonary embolism       | 937,116                               | 10                  | 17               | 0.56 (0.21 to 1.15)    | -1.5 (-3.6 to 0.4)               |
| Seizure                  | 913,091                               | 36                  | 35               | 0.99 (0.62 to 1.64)    | -0.4 (-3.0 to 3.1)               |
| Syncope                  | 858,068                               | 326                 | 267              | 1.12 (0.94 to 1.34)    | 6.2 (-3.2 to 15.4)               |
| Thrombocytopenia         | 923,123                               | 56                  | 60               | 0.94 (0.63 to 1.27)    | -0.6 (-4.6 to 2.3)               |
| Uveitis                  | 933,217                               | 26                  | 20               | 1.27 (0.68 to 2.67)    | 1.0 (-1.5 to 3.8)                |
| Vertigo                  | 773,263                               | 433                 | 395              | 1.12 (0.97 to 1.28)    | 9.3 (-2.5 to 20.0)               |
|                          |                                       |                     |                  |                        |                                  |

Barda N, Dagan N, Ben-Shlomo Y, Kepten E, Waxman J, Ohana R, Hernán MA, Lipsitch M, Kohane I, Netzer D, Reis BY, Balicer RD. Safety of the BNT162b2 mRNA Covid-19 Vaccine in a Nationwide Setting. N Engl J Med. 2021 Sep 16;385(12):1078-1090. doi: 10.1056/NEJMoa2110475. Epub 2021 Aug 25. PMID: 34432976; PMCID: PMC8427535.

# Waning of Immunity / Boosters

Figure 3: Rate of documented SARS-CoV-2 infection (per 1,000 persons) from July 11, 2021 to July 31, 2021, stratified by period of second dose of COVID-19 vaccine and age group. White bars represent periods at which only persons at higher risk were allowed to receive vaccination.

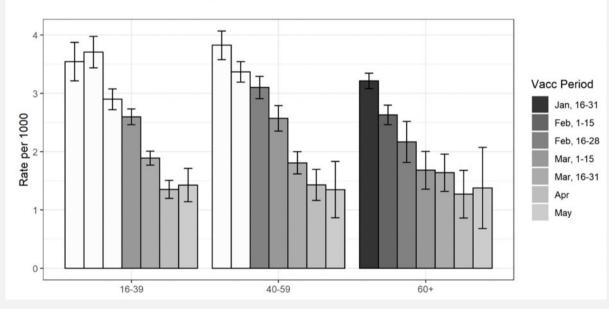
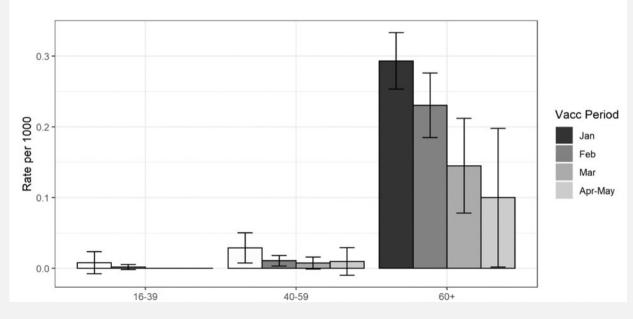
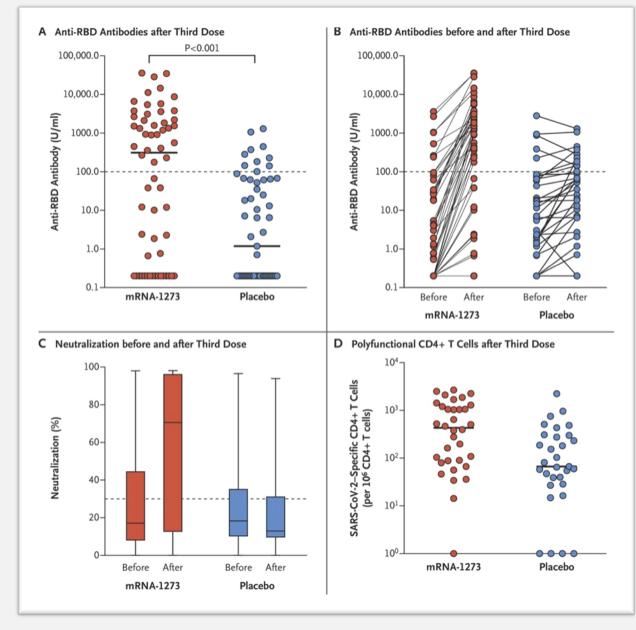




Figure 4: Rate of severe COVID-19 (per 1,000 persons) from July 11, 2021 to July 31, 2021, stratified by period of second dose of COVID-19 vaccine and age group. White bars represent periods at which only persons at higher risk were allowed to receive vaccination.

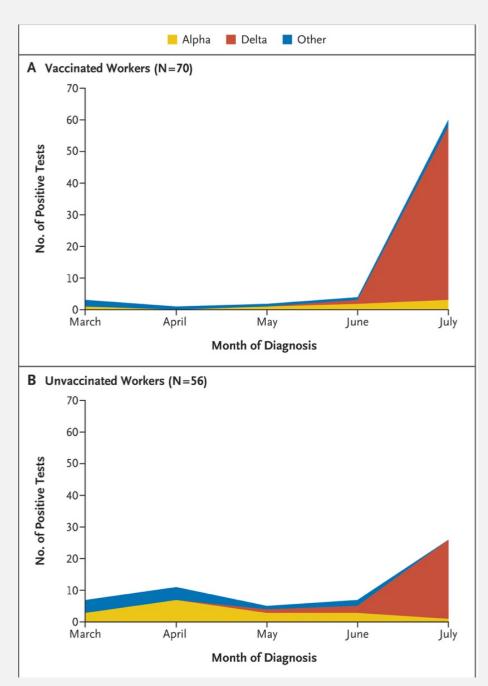



#### Waning immunity of the BNT162b2 vaccine: A nationwide study from Israel

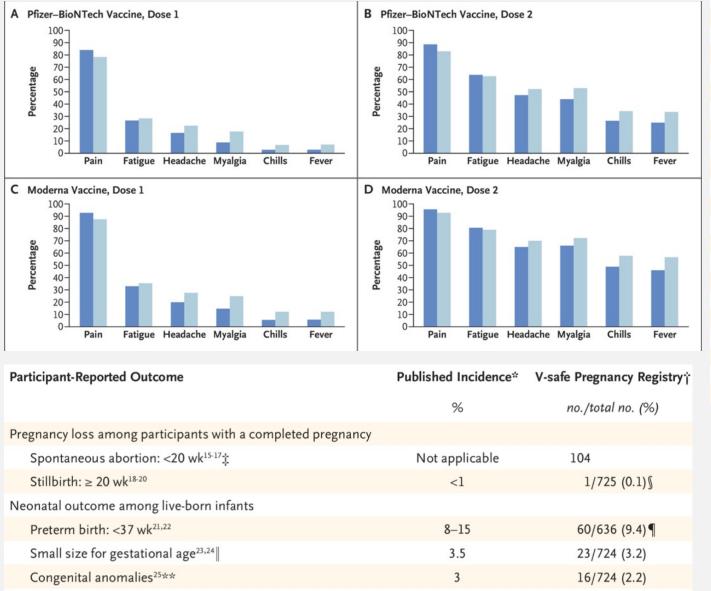
Yair Goldberg, Micha Mandel, Yinon M. Bar-On, Omri Bodenheimer, LaurenceFreedman, Eric J. Haas, Ron Milo, Sharon Alroy-Preis, Nachman Ash, Amit Hupper medRxiv 2021.08.24.21262423; doi:https://doi.org/10.1101/2021.08.24.21262423

| Outcome                    | Nonbooster Group | Booster Group | Adjusted Rate Ratio<br>(95% CI)† |
|----------------------------|------------------|---------------|----------------------------------|
| Confirmed infection        |                  |               | 11.3 (10.4 to 12.3)              |
| No. of cases               | 4439             | 934           |                                  |
| No. of person-days at risk | 5,193,825        | 10,603,410    |                                  |
| Severe illness             |                  |               | 19.5 (12.9 to 29.5)              |
| No. of cases               | 294              | 29            |                                  |
| No. of person-days at risk | 4,574,439        | 6,265,361     |                                  |

Bar-On YM, Goldberg Y, Mandel M, Bodenheimer O, Freedman L, Kalkstein N, Mizrahi B, Alroy-Preis S, Ash N, Milo R, Huppert A. Protection of BNT162b2 Vaccine Booster against Covid-19 in Israel. N Engl J Med. 2021 Sep 15. doi: 10.1056/NEJMoa2114255. Epub ahead of print. PMID: 34525275.


### Immunology Case for Boosters in Immune Compromised Individuals




Hall VG, Ferreira VH, Ku T, Ierullo M, Majchrzak-Kita B, Chaparro C, Selzner N, Schiff J, McDonald M, Tomlinson G, Kulasingam V, Kumar D, Humar A. Randomized Trial of a Third Dose of mRNA-1273 Vaccine in Transplant Recipients. N Engl J Med. 2021 Aug 11:NEJMc2111462. doi: 10.1056/NEJMc2111462. Epub ahead of print. PMID: 34379917; PMCID: PMC8385563.

|                                                    | March               | April               | May                 | June                | July              |
|----------------------------------------------------|---------------------|---------------------|---------------------|---------------------|-------------------|
| UCSDH workforce — no. of persons                   | 18,964              | 18,992              | 19,000              | 19,035              | 19,016            |
| Vaccination status — no. of persons                |                     |                     |                     |                     |                   |
| Fully vaccinated†                                  | 14,470              | 15,510              | 16,157              | 16,426              | 16,492            |
| mRNA-1273 (Moderna)                                | 6,608               | 7,005               | 7,340               | 7,451               | 7,464             |
| BNT162b2 (Pfizer-BioNTech)                         | 7,862               | 8,505               | 8,817               | 8,975               | 9,028             |
| Unvaccinated                                       | 3,230               | 2,509               | 2,187               | 2,059               | 1,895             |
| Percentage of workers fully vaccinated             | 76.3                | 81.7                | 85.0                | 86.3                | 86.7              |
| Symptomatic Covid-19                               |                     |                     |                     |                     |                   |
| Fully vaccinated workers                           | 3                   | 4                   | 3                   | 5                   | 94                |
| Unvaccinated workers                               | 11                  | 17                  | 10                  | 10                  | 31                |
| Percentage of cases in fully vaccinated<br>workers | 21.4                | 19.0                | 23.1                | 33.3                | 75.2              |
| Attack rate per 1000 (95% CI)                      |                     |                     |                     |                     |                   |
| Fully vaccinated workers                           | 0.21<br>(0.21–0.47) | 0.26<br>(0.26–0.50) | 0.19<br>(0.21–0.40) | 0.30<br>(0.31–0.53) | 5.7<br>(5.4–6.2   |
| Unvaccinated workers                               | 3.4<br>(2.1–5.9)    | 6.8<br>(4.5–10.6)   | 4.6<br>(2.6–8.2)    | 4.9<br>(2.9–8.7)    | 16.4<br>(11.8–22. |
| Vaccine effectiveness — % (95% CI)                 | 93.9<br>(78.2–97.9) | 96.2<br>(88.7–98.3) | 95.9<br>(85.3–98.9) | 94.3<br>(83.7–98.0) | 65.5<br>(48.9–76. |

Keehner J, Horton LE, Binkin NJ, Laurent LC, Pride D, Longhurst CA, Abeles SR, Torriani FJ. Resurgence of SARS-CoV-2 Infection in a Highly Vaccinated Health System Workforce. N Engl J Med. 2021 Sep 1. doi: 10.1056/NEJMc2112981. Epub ahead of print. PMID: 34469645.



### Vaccine Safety in Pregnant Women – approximately 3900 pregnancies



<1

0/724

Neonatal death<sup>26</sup>††

| Characteristic                                         | Pfizer–BioNTech<br>Vaccine | Moderna<br>Vaccine | Total         |
|--------------------------------------------------------|----------------------------|--------------------|---------------|
|                                                        |                            | number (percent)   |               |
| Total                                                  | 19,252 (53.9)              | 16,439 (46.1)      | 35,691 (100)  |
| Age at first vaccine dose                              |                            |                    |               |
| 16–19 yr                                               | 23 (0.1)                   | 36 (0.2)           | 59 (0.2)      |
| 20–24 yr                                               | 469 (2.4)                  | 525 (3.2)          | 994 (2.8)     |
| 25–34 yr                                               | 11,913 (61.9)              | 9,960 (60.6)       | 21,873 (61.3) |
| 35–44 yr                                               | 6,002 (31.2)               | 5,011 (30.5)       | 11,013 (30.9) |
| 45–54 yr                                               | 845 (4.4)                  | 907 (5.5)          | 1,752 (4.9)   |
| Pregnancy status                                       |                            |                    |               |
| Pregnant at time of vaccination                        | 16,522 (85.8)              | 14,365 (87.4)      | 30,887 (86.5) |
| Positive pregnancy test after vaccination              | 2,730 (14.2)               | 2,074 (12.6)       | 4,804 (13.5)  |
| Race and ethnic group†                                 |                            |                    |               |
| Participants with available data                       | 14,320                     | 13,232             | 27,552        |
| Non-Hispanic White                                     | 10,915 (76.2)              | 9,982 (75.4)       | 20,897 (75.8) |
| Hispanic                                               | 1,289 (9.0)                | 1,364 (10.3)       | 2,653 (9.6)   |
| Non-Hispanic Asian                                     | 972 (6.8)                  | 762 (5.8)          | 1,734 (6.3)   |
| Non-Hispanic Black                                     | 371 (2.6)                  | 338 (2.6)          | 709 (2.6)     |
| Non-Hispanic multiple races                            | 315 (2.2)                  | 292 (2.2)          | 607 (2.2)     |
| Non-Hispanic other race                                | 76 (0.5)                   | 56 (0.4)           | 132 (0.5)     |
| Non-Hispanic American Indian or Alaska Native          | 40 (0.3)                   | 54 (0.4)           | 94 (0.3)      |
| Non-Hispanic Native Hawaiian or other Pacific Islander | 33 (0.2)                   | 31 (0.2)           | 64 (0.2)      |
| Unknown race or unknown ethnic group                   | 309 (2.2)                  | 353 (2.7)          | 662 (2.4)     |
|                                                        |                            |                    |               |

Shimabukuro TT, Kim SY, Myers TR, Moro PL, Oduyebo T, Panagiotakopoulos L, Marquez PL, Olson CK, Liu R, Chang KT, Ellington SR, Burkel VK, Smoots AN, Green CJ, Licata C, Zhang BC, Alimchandani M, Mba-Jonas A, Martin SW, Gee JM, Meaney-Delman DM; CDC v-safe COVID-19 Pregnancy Registry Team. Preliminary Findings of mRNA Covid-19 Vaccine Safety in Pregnant Persons. N Engl J Med. 2021 Jun 17;384(24):2273-2282. doi: 10.1056/NEJMoa2104983. Epub 2021 Apr 21.

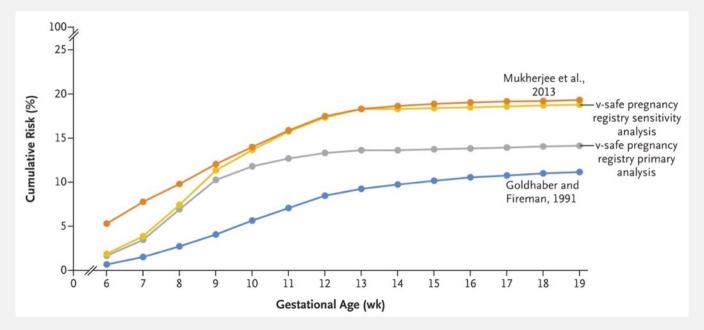



 Table 1. Risk of Spontaneous Abortion among Participants in the v-safe Covid-19 Vaccine Pregnancy Registry, December 14, 2020, through July 19, 2021.

| Gestational Age | Participants<br>at Risk | Participants<br>Who Reported<br>Spontaneous<br>Abortion | Week-Specific<br>Risk | Cumulative<br>Risk |
|-----------------|-------------------------|---------------------------------------------------------|-----------------------|--------------------|
|                 | numbe                   | r of persons                                            | percent               | percent (95% CI)   |
| 6 to <7 weeks   | 904                     | 15                                                      | 1.7                   | 1.7 (0.8–2.5)      |
| 7 to <8 weeks   | 982                     | 18                                                      | 1.8                   | 3.5 (2.3-4.6)      |
| 8 to <9 weeks   | 1032                    | 37                                                      | 3.6                   | 6.9 (5.4-8.5)      |
| 9 to <10 weeks  | 1087                    | 39                                                      | 3.6                   | 10.3 (8.4–12.0)    |
| 10 to <11 weeks | 1118                    | 19                                                      | 1.7                   | 11.8 (9.9–13.7)    |
| 11 to <12 weeks | 1184                    | 12                                                      | 1.0                   | 12.7 (10.7–14.6)   |
| 12 to <13 weeks | 1274                    | 9                                                       | 0.7                   | 13.3 (11.3–15.2)   |
| 13 to <14 weeks | 1394                    | 5                                                       | 0.4                   | 13.6 (11.6–15.6)   |
| 14 to <15 weeks | 1534                    | 0                                                       | 0                     | 13.6 (11.6–15.6)   |
| 15 to <16 weeks | 1632                    | 2                                                       | 0.1                   | 13.7 (11.7–15.7)   |
| 16 to <17 weeks | 1742                    | 2                                                       | 0.1                   | 13.8 (11.8–15.8)   |
| 17 to <18 weeks | 1848                    | 2                                                       | 0.1                   | 13.9 (11.9–15.9)   |
| 18 to <19 weeks | 1941                    | 3                                                       | 0.2                   | 14.0 (12.0–16.0)   |
| 19 to <20 weeks | 2052                    | 2                                                       | 0.1                   | 14.1 (12.1–16.1)   |

Zauche LH, Wallace B, Smoots AN, Olson CK, Oduyebo T, Kim SY, Petersen EE, Ju J, Beauregard J, Wilcox AJ, Rose CE, Meaney-Delman DM, Ellington SR; CDC v-safe Covid-19 Pregnancy Registry Team. Receipt of mRNA Covid-19 Vaccines and Risk of Spontaneous Abortion. N Engl J Med. 2021 Sep 8. doi: 10.1056/NEJMc2113891. Epub ahead of print. PMID: 34496196.